Filters
total: 98
Best results in : Research Potential Pokaż wszystkie wyniki (79)
Search results for: HSP70 ATPASE CYCLE
-
KatedrA Chemii Fizycznej
Research Potential1.Termodynamika i struktura roztworów, oddziaływania międzycząsteczkowe w roztworach - badania termodynamiczne, spektroskopowe i teoretyczne. 2. Fizykochemiczne podstawy analizy środowiskowej.
-
Zespół Katedry Rachunku Prawdopodobieństwa i Biomatematyki
Research Potential* modele ryzyka i ich zastosowania * probabilistyczne i grafowe metody w biologii * stochastyczne równania różniczkowe * statystyczna analiza danych * teoria grafów * teoria i zastosowania stochastycznych układów dynamicznych w biologii i medycynie
-
Katedra Inżynierii Sanitarnej
Research PotentialKatedra realizuje swoje zadania badawcze w takim zakresie jak opracowywanie metody podczyszczania lub oczyszczania ścieków przemysłowych oraz ich pomiary. Drugą gałęzią zainteresowań są modele matematyczne i symulacje procesów oczyszczania ścieków i zagospodarowania osadów, opracowywanie symulacji strategii eksploatacyjnych i działań modernizacyjnych.
Best results in : Business Offer Pokaż wszystkie wyniki (19)
Search results for: HSP70 ATPASE CYCLE
-
Laboratorium Badawcze 2-3
Business OfferObliczenia komputerowe wymagające dużych mocy obliczeniowych z wykorzystaniem oprogramowania typu: Matlab, Tomlab, Gams, Apros.
-
Laboratorium Maszyn i Systemów Okrętowych
Business OfferBadania procesów i zjawisk w czasie realizacji obiegu roboczego w silniku z zapłonem samoczynnym dla potrzeb diagnostyki maszyn tłokowych.
-
Laboratorium Źródeł Energii w Katedrze Konwersji i Magazynowania Energii
Business Offer
Other results Pokaż wszystkie wyniki (722)
Search results for: HSP70 ATPASE CYCLE
-
Mechanochemical Energy Transduction during the Main Rotary Step in the Synthesis Cycle of F1-ATPase
PublicationF1-ATPase is a highly efficient molecular motor that can synthesize ATP driven by a mechanical torque. Its ability to function reversibly in either direction requires tight mechanochemical coupling between the catalytic domain and the rotating central shaft, as well as temporal control of substrate binding and product release. Despite great efforts and significant progress, the molecular details of this synchronized and fine-tuned...
-
Molecular mechanism and energetics of coupling between substrate binding and product release in the F 1 -ATPase catalytic cycle
PublicationF1-ATPase is a motor protein that couples the rotation of its rotary γ subunit with ATP synthesis or hydrolysis. Single-molecule experiments indicate that nucleotide binding and release events occur almost simultaneously during the synthesis cycle, allowing the energy gain due to spontaneous binding of ADP to one catalytic β subunit to be directly harnessed for driving the release of ATP from another rather than being dissipated...
-
Analysis of Reconstituted Tripartite Complex Supports Avidity-based Recruitment of Hsp70 by Substrate Bound J-domain Protein
PublicationHsp70 are ubiquitous, versatile molecular chaperones that cyclically interact with substrate protein(s). The initial step requires synergistic interaction of a substrate and a J-domain protein (JDP) cochaperone, via its J-domain, with Hsp70 to stimulate hydrolysis of its bound ATP. This hydrolysis drives conformational changes in Hsp70 that stabilize substrate binding. However, because of the transient nature of substrate and JDP...
-
Rotation Triggers Nucleotide-Independent Conformational Transition of the Empty β Subunit of F1-ATPase
PublicationF1-ATPase (F1) is the catalytic portion of ATP synthase, a rotary motor protein that couples proton gradients to ATP synthesis. Driven by a proton flux, the F1 asymmetric γ subunit undergoes a stepwise rotation inside the α3β3 headpiece and causes the β subunits’ binding sites to cycle between states of different affinity for nucleotides. These concerted transitions drive the synthesis of ATP from ADP and phosphate. Here, we study...
-
Torsional elasticity and energetics of F1-ATPase
PublicationFoF1-ATPase is a rotary motor protein synthesizing ATP from ADP driven by a cross-membrane proton gradient. The proton flow through the membrane-embedded Fo generates the rotary torque that drives the rotation of the asymmetric shaft of F1. Mechanical energy of the rotating shaft is used by the F1 catalytic subunit to synthesize ATP. It was suggested that elastic power transmission with transient storage of energy in some compliant...