NETWORKS - Journal - Bridge of Knowledge

Search

NETWORKS

ISSN:

0028-3045

eISSN:

1097-0037

Disciplines
(Field of Science):

  • ethnology and cultural anthropology (Humanities)
  • information and communication technology (Engineering and Technology)
  • biomedical engineering (Engineering and Technology)
  • heritage protection and conservation of monuments (Engineering and Technology)
  • family studies (Family studies)
  • economics and finance (Social studies)
  • management and quality studies (Social studies)
  • international relations (Social studies)
  • computer and information sciences (Natural sciences)

Ministry points: Help

Ministry points - current year
Year Points List
Year 2024 140 Ministry scored journals list 2024
Ministry points - previous years
Year Points List
2024 140 Ministry scored journals list 2024
2023 140 Ministry Scored Journals List
2022 140 Ministry Scored Journals List 2019-2022
2021 140 Ministry Scored Journals List 2019-2022
2020 140 Ministry Scored Journals List 2019-2022
2019 140 Ministry Scored Journals List 2019-2022
2018 25 A
2017 25 A
2016 25 A
2015 25 A
2014 25 A
2013 20 A
2012 25 A
2011 25 A
2010 27 A

Model:

Hybrid

Points CiteScore:

Points CiteScore - current year
Year Points
Year 2023 4.4
Points CiteScore - previous years
Year Points
2023 4.4
2022 3.9
2021 5.2
2020 3.8
2019 3.4
2018 2.2
2017 2.4
2016 2.2
2015 2.2
2014 2.1
2013 2.3
2012 2
2011 2

Impact Factor:

Log in to see the Impact Factor.

Filters

total: 10

  • Category
  • Year
  • Options

clear Chosen catalog filters disabled

Catalog Journals

Year 2024
Year 2021
Year 2020
Year 2017
  • Toward Fast Calculation of Communication Paths for Resilient Routing
    Publication

    - NETWORKS - Year 2017

    Utilization of alternate communication paths is a common technique to provide protection of transmission against failures of network nodes/links. However, a noticeable delay is encountered when calculating the relevant sets of disjoint paths using the available algorithms (e.g., using Bhandari’s approach). This, in turn, may have a serious impact on the ability of a network to serve dynamic demands...

    Full text to download in external service

Year 2013
  • Complexity of a classical flow restoration problem
    Publication

    - NETWORKS - Year 2013

    Full text to download in external service

  • Optimal edge-coloring with edge rate constraints
    Publication

    - NETWORKS - Year 2013

    We consider the problem of covering the edges of a graph by a sequence of matchings subject to the constraint that each edge e appears in at least a given fraction r(e) of the matchings. Although it can be determined in polynomial time whether such a sequence of matchings exists or not [Grötschel et al., Combinatorica (1981), 169–197], we show that several questions about the length of the sequence are computationally intractable....

    Full text to download in external service

Year 2010
Year 2009
  • Cost minimization in wireless networks with a bounded and unbounded number of interfaces
    Publication

    - NETWORKS - Year 2009

    Praca dotyczy problemu minimalizacji energii poprzez selektywne odłączanie urządzeń komunikacyjnych w wielointerfejsowych sieciach bezprzewodowych w taki sposób, by zapewnić realizację wymaganego grafu połączeń. Sformułowano problem optymalizacyjny, podano wyniki dotyczące jego trudności i zaproponowano algorytmy optymalizacyjne. Rozważono zarówno wariant, w którym liczba interfejsów komunikacyjnych jest parametrem stałym (narzuconym...

    Full text to download in external service

  • On the complexity of distributed graph coloring with local minimality constraints
    Publication

    - NETWORKS - Year 2009

    Artykuł traktuje o zachłannym kolorowaniu grafów w modelu rozproszonym. Omówiono algorytmy rozproszone, dające w wyniku pokolorowanie spełniające warunki dla pokolorowań sekwencyjnych typu S oraz Largest-First (LF). Udowodniono również, że każda rozproszona implementacja algorytmu S wymaga co najmniej Omega(log n / log log n) rund, a algorytmu LF co najmniej Omega (n^{1/2}) rund, gdzie n oznacza liczbę wierzchołków grafu.

    Full text available to download

seen 576 times