mgr inż. Michał Baranowski
Employment
- 2021 - present PhD Student at Department of Microwave and Antenna Engineering
- Assistant at Department of Microwave and Antenna Engineering
Publications
Filters
total: 12
Catalog Publications
Year 2024
-
An Open Platform Tool for 2D Multipactor Simulations in Metallic Microwave Components
PublicationThe paper presents a computer simulation software aimed at assessing the multipactor threshold power in a rectangular waveguide working with single tone excitation. Initial tests demonstrate a strong agreement between the simulation results obtained and those from commercial software. Contrary to the existing commercial software, our tool will be provided as Open Platform, for free use and popularisation of knowledge about physical...
-
Low-Cost Method for Effective Conductivity Improvement of Additively Manufactured All-Metal Waveguide Components
Publication— In this paper, a low-cost method of 3D printed allmetal waveguide effective conductivity improvement is proposed and studied. The approach is a combination of internal surface polishing to reduce the roughness followed by coating a highconductivity layer through electroplating. Both methods allow to reduce total power losses within the waveguide which are impacted by the conductivity of the metal. A set of mm-wave test vehicles...
-
Low-Cost Method for Internal Surface Roughness Reduction of Additively Manufactured All-Metal Waveguide Components
PublicationIn this study, a novel low-cost polishing method for internal surface roughness reduction of additively manufactured components, developed for waveguide (WG) circuits operating in the millimeter frequency range is proposed. WG components fabricated using powder bed fusion (PBF) generally feature roughness of ten to fifty microns, which influences the increase of roughness-related conductor power losses having a major effect on...
-
Low-Loss 3D-Printed Waveguide Filters Based on Deformed Dual-Mode Cavity Resonators
PublicationThis paper introduces a new type of waveguide filter with smooth profile, based on specially designed dual-mode (DM) cavity resonators. The DM cavity design is achieved by applying a shape deformation scheme. The coupling between the two orthogonal cavity modes is implemented by breaking the symmetry of the structure, thus eliminating the need for additional coupling elements. The modes operating in the cavity are carefully analyzed...
Year 2023
-
Rectangular Waveguide Filters Based on Deformed Dual-Mode Cavity Resonators
PublicationIn this paper, a novel design for rectangular waveguide filters with deformed dual-mode (DM) cavity resonators is demonstrated. The new resonant cavity shape is a result of applying shape deformation to the basic rectangular cavity to enable its dual-mode operation. Internal coupling between the two orthogonal cavity modes is realized by geometry deformation, eliminating the need for additional coupling elements. The designs are...
-
The Design of Cavity Resonators and Microwave Filters Applying Shape Deformation Techniques
PublicationThis article introduces shape deformation as a new approach to the computer-aided design (CAD) of high-frequency components. We show that geometry deformation opens up new design possibilities and offers additional degrees of freedom in the 3-D modeling of microwave structures. Such design flexibility is highly desirable if the full potential of additive manufacturing (AM) is to be exploited in the fabrication of RF and microwave...
Year 2022
-
A Circular Waveguide Dual-Mode Filter With Improved Out-of-Band Performance for Satellite Communication Systems
PublicationThis letter presents a novel design for a 3-D-printed circular waveguide dual-mode (CWDM) filter with a modified cavity shape. The modification leads to a wide spurious-free stopband, which is highly desirable for channel separation in waveguide contiguous output multiplexers (OMUXs) in satellite communication systems. The new resonant cavity design is a result of applying shape deformation to a basic circular cavity in order to...
-
Bayesian Optimization for solving high-frequency passive component design problems
PublicationIn this paper, the performance of the Bayesian Optimization (BO) technique applied to various problems of microwave engineering is studied. Bayesian optimization is a novel, non-deterministic, global optimization scheme that uses machine learning to solve complex optimization problems. However, each new optimization scheme needs to be evaluated to find its best application niche, as there is no universal technique that suits all...
-
Fast Design Optimization of Waveguide Filters Applying Shape Deformation Techniques
PublicationThis paper presents an efficient design of microwave filters by means of geometry optimization using shape deformation techniques. This design procedure allows for modelling complex 3D geometries which can be fabricated by additive manufacturing (AM). Shape deforming operations are based on radial basis function (RBF) interpolation and are integrated into an electromagnetic field simulator based on the 3D finiteelement method (FEM)....
-
Novel Low-Loss Substrates for 5G Applications
PublicationThis paper presents a feasibility study of a new type of microwave low-loss dielectric substrates for 5G network applications. The new substrate materials are composites of polypropylene and high-dielectric-constant micro-ceramics. This combination is expected to form a very low-loss dielectric material at low fabrication cost. Two substrate samples with different dielectric properties are fabricated and their characteristics at...
Year 2020
-
Electromagnetic Simulation with 3D FEM for Design Automation in 5G Era
PublicationElectromagnetic simulation and electronic design automation (EDA) play an important role in the design of 5G antennas and radio chips. The simulation challenges include electromagnetic effects and long simulation time and this paper focuses on simulation software based on finite-element method (FEM). The state-of-the-art EDA software using novel computational techniques based on FEM can not only accelerate numerical analysis, but...
-
Hybrid Technique for the EM Scattering Analysis with the Use of Ring Domain Decomposition
PublicationA hybrid technique combining finite-element and mode-matching methods for the analysis of scattering problems in open space is presented here. The main idea is based on impedance matrix descriptions of the boundary surrounding the discrete computational domain and combine it with external field described analytically. The discrete analysis, which is the most time- and memory-consuming, is limited here only to the close proximity...
seen 1277 times