Open Research Data  Electronic transition dipole moment functions of the Lithium dimer
Filters
total: 16
Open Research Data Series

Electronic transition dipole moment functions of the first singlet Delta gerade and first triplet Delta ungerade states of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the first singlet Delta gerade (1sDg) and first triplet Delta ungerade (1tDu) states have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the four ETDMFs have been obtained...

Electronic transition dipole moment functions of the second singlet Pi gerade and second triplet Pi gerade states of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the second singlet Pi gerade (2sPg) and second triplet Pi gerade (2tPg) states have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the four ETDMFs have been obtained...

Electronic transition dipole moment functions of the first singlet Pi gerade and first triplet Pi gerade states of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the first singlet Pi gerade (1sPg) and first triplet Pi gerade (1tPg) states have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the four ETDMFs have been obtained...

Electronic transition dipole moment functions of the third singlet Sigma ungerade plus and third triplet Sigma gerade plus states of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the third singlet Sigma ungerade plus (3sSu+) and third triplet Sigma gerade plus (3tSg+) states have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the four ETDMFs...

Electronic transition dipole moment functions of the second singlet Sigma ungerade plus and second triplet Sigma gerade plus states of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the second singlet Sigma ungerade plus (2sSu+) and second triplet Sigma gerade plus (2tSg+) states have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the four ETDMFs...

Electronic transition dipole moment functions of the first singlet Sigma ungerade plus and first triplet Sigma gerade plus states of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the first singlet Sigma ungerade plus (1sSu+) and first triplet Sigma gerade plus (1tSg+) states have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the four ETDMFs...

Electronic transition dipole moment functions of the fifth triplet Sigma ungerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the fifth triplet Sigma ungerade plus (5tSu+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...

Electronic transition dipole moment functions of the fourth triplet Sigma ungerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the fourth triplet Sigma ungerade plus (4tSu+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...

Electronic transition dipole moment functions of the third triplet Sigma ungerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the third triplet Sigma ungerade plus (3tSu+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...

Electronic transition dipole moment functions of the second triplet Sigma ungerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the second triplet Sigma ungerade plus (2tSu+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...

Electronic transition dipole moment functions of the first triplet Sigma ungerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the first triplet Sigma ungerade plus (1tSu+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...

Electronic transition dipole moment functions of the fifth singlet Sigma gerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the fifth singlet Sigma gerade plus (5sSg+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...

Electronic transition dipole moment functions of the fourth singlet Sigma gerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the fourth singlet Sigma gerade plus (4sSg+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...

Electronic transition dipole moment functions of the third singlet Sigma gerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the third singlet Sigma gerade plus (3sSg+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...

Electronic transition dipole moment functions of the second singlet Sigma gerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the second singlet Sigma gerade plus (2sSg+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...

Electronic transition dipole moment functions of the first singlet Sigma gerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the first singlet Sigma gerade plus (1sSg+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...