A continual model of a damaged medium used for analyzing fatigue life of polycrystalline structural alloys under thermal–mechanical loading - Publication - MOST Wiedzy


A continual model of a damaged medium used for analyzing fatigue life of polycrystalline structural alloys under thermal–mechanical loading


The main physical laws of thermal–plastic deformation and fatigue damage accumulation processes in polycrystalline structural alloys under various regimes of cyclic thermal–mechanical loading are considered. Within the framework of mechanics of damaged media, a mathematical model is developed that describes thermal–plastic deformation and fatigue damage accumulation processes under low-cycle loading. The model consists of three interrelated parts: relations defining plastic behavior of the material, accounting for its dependence on the failure process; evolutionary equations describing damage accumulation kinetics; a strength criterion of the damaged material. The plasticity model based on the notion of yield surface and the principle of orthogonality of the plastic strain vector to the yield surface is used as defining relations. This version of defining equations of plasticity describes the main effects of the deformation process under monotone cyclic, proportional and nonproportional loading regimes. The version of kinetic equations of damage accumulation is based on introducing a scalar parameter of damage degree and energy principles, and account for the main effects of nucleation, growth and merging of microdefects under arbitrary regimes of low-cycle loading. The strength criterion of the damaged material is based on reaching a critical value of the damage degree. The results of numerically modeling cyclic thermal–plastic deformation and fatigue damage accumulation in heat-resistant alloys (Nimonic 80A, Haynes 188) under combined thermal–mechanical loading are presented. Special attention is paid to the issues of modeling the processes of cyclic thermal–plastic deformation and fatigue damage accumulation for complex deformation processes accompanied by the rotation of the main stress and strain tensor areas. It is shown that the present damaged medium model accurately enough for engineering purposes describes the processes of cyclic isothermal and nonisothermal deformation and fatigue damage accumulation under combined thermal–mechanical loading and makes it possible to evaluate low-cycle fatigue life of heat-resistant alloys under arbitrary deformation trajectories.


  • 1 0


  • 9

    Web of Science

  • 1 0


Authors (5)

Cite as

Full text

download paper
downloaded 74 times
Publication version
Accepted or Published Version
Creative Commons: CC-BY open in new tab



artykuły w czasopismach
Published in:
ISSN: 0935-1175
Publication year:
Bibliographic description:
Volkov I., Igumnov L., Dell'Isola F., Litvinchuk S., Eremeev V.: A continual model of a damaged medium used for analyzing fatigue life of polycrystalline structural alloys under thermal–mechanical loading// CONTINUUM MECHANICS AND THERMODYNAMICS -Vol. 32, (2020), s.229-245
Digital Object Identifier (open in new tab) 10.1007/s00161-019-00795-x
Bibliography: test
  1. Halford, G.R.: Low cycle thermal fatigue. Mechanics and Mathematical Methods. In: Thermal Stress II. Chapter 6. pp. 329-428. Elsevier (1987) open in new tab
  2. Serencen, S.V. (ed.): Issledovanie malotsiklovoy prochnosti pri vysokih temperaturah. (in Russ.). Nauka, Moscow (1975)
  3. Collins, J.A.: Damage of Materials in Structures. Analysis, Prediction, Prevention. Wiley, New York (1981)
  4. Eorum: Otsenka sovremennoy metodologii proektirovaniya vysokotemperaturnyh elementov konstruktsiy na osnove eksper- imentov po ih razrusheniyu (in Russ.) Teoreticheskiye osnovy inzhenernyh raschetov. 1 1 pp. 104-118 (1988) open in new tab
  5. Bernard-Connolly, M., Biron, A., Bue-Quic, T.: Low-cycle fatigue behaviour and cumulative dormage effect of SA-516- 70 steel at room and high temperature. In: 4th International Conference Pressure Vessel Technology, vol. 1, pp. 297-302. Institution of Mechanical Engineers, London (1980)
  6. Gusenkov, A.P., Eazantsev, A.G.: Prochnost pri malotsiklovom i dlitelnom tsiklicheskom nagruzhesnii i nagreve (in Russ.). Mashinovedenie 3, 59-65 (1979)
  7. I. A. Volkov et al. open in new tab
  8. Sentoglou: Vliyanie ogranicheniy na termomehanicheskuyu ustalost (in Russ.) Teoreticheskie osnovy inzhenernyh raschetov. 3, 74-83 (1985) open in new tab
  9. Bodner, S.R., Lindholm, U.S.: An incremental criterion for time-dependent failure of materials. J. Eng. Mater. Technol. ASME 98(2), 140-145 (1976) open in new tab
  10. Lemaitre, J., et al.: A continuous damage mechanics model for ductile fracture. J. Eng. Mater. Technol. ASME 107(1), 83-89 (1985) open in new tab
  11. Murakami, S., Imaizumi, T.: Mechanical description of creep damage and its experimental verification. J. Méc. Théor. Appl. 1, 743-761 (1982) open in new tab
  12. Chaboche, J.L.: Continuous damage mechanics a tool to describe phenomena before crack initiation. Eng. Des. 64, 233-247 (1981) open in new tab
  13. Volkov, I.A., Eorotkikh, Y.G.: Uravneniya sostoyaniya vyazkouprugoplasticheskih sred s povrezhdeniyami (in Russ.). Fiz- matlit, Moscow (2008)
  14. Volkov, I.A., Igumnov, L.A.: Vvedenie v kontinualnuyu mehaniku povrezhdennoy sredy (in Russ.). Fizmatlit, Moscow (2017)
  15. Volkov, I.A., Eorotkikh, Y.G., Tarasov, I.S.: Modelirovanie slozhnogo plasticheskogo deformirovaniya i razrusheniya met- allov pri mnogoosnom neproportsionalnom nagruzhenii (in Russ.). PMTF 50(5), 193-205 (2009) open in new tab
  16. Volkov, I.A., Eorotkikh, Yu.G., Tarasov, I.S.: Chislennoe modelirovanie nakopleniya povrezhdeniy pri slozhnom plastich- eskom deformirovanii (in Russ.) Vychisl. meh. splosh. sred. 2(1), 5-18 (2009) open in new tab
  17. Volkov, I.A., Shishulin, D.N., Eazakov, D.A., Pichkov, S.N.: Modelirovanie osnovnyh zakonomernostey protsessa deformirovaniya i nakopleniya povrezhdeniy v konstruktsionnyh materialah na baze kontseptsii mehaniki povrezhdennoi sredy (in Russ.). Problemy prochnosti i plastichnosti 74, 16-27 (2012) open in new tab
  18. Barchiesi, E., Spagnuolo, M., Placidi, L.: Mechanical metamaterials: a state of the art. Math. Mech. Solids (2018). https:// doi.org/10.1177/1081286517735695 open in new tab
  19. di Cosmo, F., Laudato, M., Spagnuolo, M.: Acoustic metamaterials based on local resonances: homogenization, optimization and applications. In: Generalized Models and Non-classical Approaches in Complex Materials 1 (pp. 247-274). Springer, Cham (2018) open in new tab
  20. Cuomo, M.: Continuum damage model for strain gradient materials with applications to 1D examples. Contin. Mech. Thermodyn. 1-19 (2018). https://doi.org/10.1007/s00161-018-0698-7 open in new tab
  21. Cuomo, M.: Continuum model of microstructure induced softening for strain gradient materials. Math. Mech. Solids (2018). https://doi.org/10.1177/1081286518755845 open in new tab
  22. Spagnuolo, M., Barcz, K., Pfaff, A., Dell'Isola, F., Franciosi, P.: Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mech. Res. Commun. 83, 47-52 (2017) open in new tab
  23. Battista, A., Rosa, L., dell'Erba, R., Greco, L.: Numerical investigation of a particle system compared with first and second gradient continua: deformation and fracture phenomena. Math. Mech. Solids 22(11), 2120-2134 (2017) open in new tab
  24. Mitenkov, F.M., Volkov, I.A., Igumnov, L.A., Eorotkikh, Y.G., Panov, V.A.: Prikladnaya teoriya plastichnosti (in Russ.). Fizmatlit, Moscow (2015)
  25. Volkov, I.A., Igumnov, L.A., Shishulin, D.N., Tarasov, I.S., Markova, M.T.: Modelirovanie ustalostnoy dolgovechnosti polikristallicheskih konstruktsionnyh splavov pri blochnom nesimmetrichnom malotsilkovom nagruzhenii (in Russ.). Prob- lemy prochnosti i plastichnosti 80(1), 15-30 (2018) open in new tab
  26. Liang, J., Pellox, R.M., Xie, X.: Thermomechanical fatique behavior of a nickel base superalloy. Chin. J. Met. Sci. Technol. 5, 1-7 (1989)
  27. Kalluri, S., Bonacuse, P.J.: An axial-torsional termomechanical fatique testing technique. Preparade for the Symposium on multiaxial fatique and deformation testing techniques. Denver, Colorado, 25 p (1995) open in new tab
  28. HAYNES® 188 ALLOY. STANDART PRODUCTS by Brand or Alloy Designation H-3001B/Global Headquarters, Kokomo, Indiana, USA open in new tab
  29. Andreaus, U., Spagnuolo, M., Lekszycki, T., Eugster, S.R.: A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler-Bernoulli beams. Contin. Mech. Thermodyn. 30, 1103-1123 (2018) open in new tab
  30. Spagnuolo, M., Andreaus, U.: A targeted review on large deformations of planar elastic beams: extensibility, distributed loads, buckling and post-buckling. Math. Mech. Solids (2018). https://doi.org/10.1177/1081286517737000 open in new tab
  31. Eugster, S.R., Glocker, C.: Constraints in structural and rigid body mechanics: a frictional contact problem. Ann. Solid Struct. Mech. 5(1-2), 1-13 (2013) open in new tab
  32. Eugster, S., Glocker, C.: Determination of the transverse shear stress in an Euler-Bernoulli beam using non-admissible virtual displacements. PAMM 14(1), 187-188 (2014) open in new tab
  33. Eugster, S.R.: An intrinsic geometric formulation of the equilibrium equations in continuum mechanics. PAMM 15(1), 289-290 (2015) open in new tab
  34. Franciosi, P., Spagnuolo, M., Salman, O.U.: Mean Green operators of deformable fiber networks embedded in a compliant matrix and property estimates. Contin. Mech. Thermodyn. 31, 101-132 (2019) open in new tab
  35. Boutin, C., Giorgio, I., Placidi, L.: Linear pantographic sheets: asymptotic micro-macro models identification. Math. Mech. Complex Syst. 5(2), 127-162 (2017) open in new tab
  36. Misra, A., Lekszycki, T., Giorgio, I., Ganzosch, G., Müller, W.H., dell'Isola, F.: Pantographic metamaterials show atypical Poynting effect reversal. Mech. Res. Commun. 89, 6-10 (2018) open in new tab
  37. Turco, E., Golaszewski, M., Giorgio, I., D'Annibale, F.: Pantographic lattices with non-orthogonal fibres: experiments and their numerical simulations. Compos. Part B Eng. 118, 1-14 (2017) open in new tab
  38. Giorgio, I., Rizzi, N.L., Turco, E.: Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis. Proc. R. Soc. A 473(2207), 20170636 (2017) open in new tab
  39. Placidi, L., Barchiesi, E., Turco, E., Rizzi, N.L.: A review on 2D models for the description of pantographic fabrics. Z. Angew. Math. Phys. 67(5), 121 (2016) open in new tab
  40. Barchiesi, E., Placidi, L.: A review on models for the 3D statics and 2D dynamics of pantographic fabrics. In: Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials (pp. 239-258). Springer, Singapore (2017) open in new tab
  41. Placidi, L., Andreaus, U., Giorgio, I.: Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model. J. Eng. Math. 103(1), 1-21 (2017) open in new tab
  42. Placidi, L., Barchiesi, E., Battista, A.: An inverse method to get further analytical solutions for a class of metamaterials aimed to validate numerical integrations. In: Mathematical Modelling in Solid Mechanics (pp. 193-210). Springer, Singapore (2017) open in new tab
  43. Turco, E., Golaszewski, M., Cazzani, A., Rizzi, N.L.: Large deformations induced in planar pantographic sheets by loads applied on fibers: experimental validation of a discrete Lagrangian model. Mech. Res. Commun. 76, 51-56 (2016) open in new tab
  44. Golaszewski, M., Grygoruk, R., Giorgio, I., Laudato, M., Di Cosmo, F.: Metamaterials with relative displacements in their microstructure: technological challenges in 3D printing, experiments and numerical predictions. Contin. Mech. Thermodyn. 1-20 (2018). https://doi.org/10.1007/s00161-018-0692-0 open in new tab
  45. Lekszycki, T., Di Cosmo, F., Laudato, M., Vardar, O.: Application of energy measures in detection of local deviations in mechanical properties of structural elements. Contin. Mech. Thermodyn. 31(2), 413-425 (2019) open in new tab
  46. Khakalo, S., Balobanov, V., Niiranen, J.: Modelling size-dependent bending, buckling and vibrations of 2D triangular lattices by strain gradient elasticity models: applications to sandwich beams and auxetics. Int. J. Eng. Sci. 127, 33-52 (2018) open in new tab
  47. Khakalo, S., Niiranen, J.: Form II of Mindlin's second strain gradient theory of elasticity with a simplification: for materials and structures from nano-to macro-scales. Eur. J. Mech. A/Solids 71, 292-319 (2018) open in new tab
  48. Abbas, I.A., Abdalla, A.E.N.N., Alzahrani, F.S., Spagnuolo, M.: Wave propagation in a generalized thermoelastic plate using eigenvalue approach. J. Therm. Stress. 39(11), 1367-1377 (2016) open in new tab
  49. Abd-alla, A.E.N.N., Alshaikh, F., Del Vescovo, D., Spagnuolo, M.: Plane waves and eigenfrequency study in a transversely isotropic magneto-thermoelastic medium under the effect of a constant angular velocity. J. Therm. Stress. 40(9), 1079-1092 (2017) open in new tab
  50. Laudato, M., Manzari, L., Barchiesi, E., Di Cosmo, F., Göransson, P.: First experimental observation of the dynamical behavior of a pantographic metamaterial. Mech. Res. Commun. 94, 125-127 (2018) open in new tab
  51. Mohammed, E.S., Placidi, L.: Discrete and continuous aspects of some metamaterial elastic structures with band gaps. Arch. Appl. Mech. 18, 1725-1742 (2018). https://doi.org/10.1007/s00419-018-1399-1. ISSN: 0939-1533 open in new tab
  52. Placidi, L., Dhaba, A.R.E.: Semi-inverse method à la Saint-Venant for two-dimensional linear isotropic homogeneous second gradient elasticity. Math. Mech. Solids 22, 919-937 (2017). https://doi.org/10.1177/1081286515616043. ISSN: 1081-2865 open in new tab
  53. Placidi, L., Greco, L., Bucci, S., Turco, E., Rizzi, N.L.: A second gradient formulation for a 2D fabric sheet with inextensible fibres. Z. Angew. Math. Phys. 67, 114 (2016). https://doi.org/10.1007/s00033-016-0701-8. ISSN: 0044-2275 open in new tab
  54. Placidi, L.: A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model. Contin. Mech. Thermodyn. 28, 119-137 (2016). https://doi.org/10.1007/s00161-014-0405-2. ISSN: 0935-1175 open in new tab
  55. Placidi, L., Barchiesi, E.: Energy approach to brittle fracture in strain-gradient modelling. Proc. R. Soc. A 474(2210), 20170878 (2018) open in new tab
  56. Placidi, L., Misra, A., Barchiesi, E.: Two-dimensional strain gradient damage modeling: a variational approach. Z. Angew. Math. Phys. 69(3), 56 (2018) open in new tab
  57. Placidi, L., Barchiesi, E., Misra, A.: A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Math. Mech. Complex Syst. 6(2), 77-100 (2018) open in new tab
  58. Placidi, L., Misra, A., Barchiesi, E.: Simulation results for damage with evolving microstructure and growing strain gradient moduli. Contin. Mech. Thermodyn. 1-21 (2018). https://doi.org/10.1007/s00161-018-0693-z open in new tab
  59. Barchiesi, E., Ganzosch, G., Liebold, C., Placidi, L., Grygoruk, R., Müller, W.H.: Out-of-plane buckling of pantographic fabrics in displacement-controlled shear tests: experimental results and model validation. Contin. Mech. Thermodyn. 1-13 (2018). https://doi.org/10.1007/s00161-018-0626-x open in new tab
  60. Javili, A., Mcbride, A., Steinmann, P.: Thermomechanics of solids with lower-dimensional energetics: On the importance of surface, interface, and curve structures at the nanoscale. A unifying review. Appl. Mech. Rev. 65, 010802 (2013) open in new tab
  61. Javili, A., McBride, A., Steinmann, P., Reddy, B.D.: A unified computational framework for bulk and surface elasticity theory: a curvilinear-coordinate-based finite element methodology. Comput. Mech. 54, 745-762 (2014) open in new tab
  62. Javili, A., dell'Isola, F., Steinmann, P.: Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids 61, 2381-2401 (2013) open in new tab
  63. Javili, A., Dortdivanlioglu, B., Kuhl, E., Linder, C.: Computational aspects of growth-induced instabilities through eigenvalue analysis. Comput. Mech. 56, 405-420 (2015) open in new tab
  64. De Masi, A., Merola, I., Presutti, E., Vignaud, Y.: Potts models in the continuum. Uniqueness and exponential decay in the restricted ensembles. J. Stat. Phys. 133(2), 281-345 (2008) open in new tab
  65. De Masi, A., Merola, I., Presutti, E., Vignaud, Y.: Coexistence of ordered and disordered phases in Potts models in the continuum. J. Stat. Phys. 134(2), 243-306 (2009) open in new tab
  66. Niiranen, J., Kiendl, J., Niemi, A.H., Reali, A.: Isogeometric analysis for sixth-order boundary value problems of gradient- elastic Kirchhoff plates. Comput. Methods Appl. Mech. Eng. 316, 328-348 (2017) open in new tab
  67. Khakalo, S., Niiranen, J.: Isogeometric analysis of higher-order gradient elasticity by user elements of a commercial finite element software. Comput. Aided Des. 82, 154-169 (2017) open in new tab
  68. Greco, L., Cuomo, M., Contrafatto, L., Gazzo, S.: An efficient blended mixed B-spline formulation for removing membrane locking in plane curved Kirchhoff rods. Comput. Methods Appl. Mech. Eng. 324, 476-511 (2017) open in new tab
  69. Cuomo, M., Greco, L.: An implicit strong G1-conforming formulation for the analysis of the Kirchhoff plate model. Contin. Mech. Thermodyn. 1-25 (2018). https://doi.org/10.1007/s00161-018-0701-3 open in new tab
  70. Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids 21(5), 562-577 (2016) open in new tab
  71. Cazzani, A., Atluri, S.N.: Four-noded mixed finite elements, using unsymmetric stresses, for linear analysis of membranes. Comput. Mech. 11(4), 229-251 (1993) open in new tab
Verified by:
Gdańsk University of Technology

seen 299 times

Recommended for you

Meta Tags