A design framework for rigorous constrained EM-driven optimization of miniaturized antennas with circular polarization - Publication - Bridge of Knowledge

Search

A design framework for rigorous constrained EM-driven optimization of miniaturized antennas with circular polarization

Abstract

Compact radiators with circular polarization are important components of modern mobile communication systems. Their design is a challenging process which requires maintaining simultaneous control over several performance figures but also the structure size. In this work, a novel design framework for multi-stage constrained miniaturization of antennas with circular polarization is presented. The method involves sequential optimization of the radiator in respect of selected performance figures and, eventually, the size. Optimizations are performed with iteratively increased number of design constraints. Numerical efficiency of the method is ensured using a fast local-search algorithm embedded in a trust-region framework. The proposed design framework is demonstrated using a compact planar radiator with circular polarization. The optimized antenna is characterized by a small size of 271 mm2 with 37% and 47% bandwidths in respect of 10 dB return loss and 3 dB axial ratio, respectively. The structure is benchmarked against the state of-the-art circular polarization antennas. Numerical results are confirmed by measurements of the fabricated antenna prototype.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cite as

Full text

download paper
downloaded 29 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Metrology and Measurement Systems no. 26, pages 41 - 52,
ISSN: 0860-8229
Language:
English
Publication year:
2019
Bibliographic description:
Bekasiewicz A., Kozieł S.: A design framework for rigorous constrained EM-driven optimization of miniaturized antennas with circular polarization// Metrology and Measurement Systems -Vol. 26,iss. 1 (2019), s.41-52
DOI:
Digital Object Identifier (open in new tab) 10.24425/mms.2019.126331
Bibliography: test
  1. Lu, J.H., Chang, B.S. (2017). Planar compact square-ring tag antenna with circular polarization for UHF RFID applications. IEEE Trans. Ant. Prop., 65(2), 432-441. open in new tab
  2. Pan, T., Zhang, S., He, S. (2014). Compact RFID tag antenna with circular polarization and embedded feed network for metallic objects. IEEE Ant. Wireless Prop. Lett., 13, 1271-1274.
  3. Son, W.I., Lim, W.G., Lee, M.Q., Min, S.B., Yu, J.W. (2010). Design of compact quadruple inverted-F antenna with circular polarization for GPS receiver. IEEE Trans. Ant. Prop., 58(5), 1503-1510.
  4. Wang, M.S., Zhu, X.Q., Guo, Y.X., Wu, W. (2018). Miniaturized dual-band circularly polarized quadruple inverted-F antenna for GPS applications. IEEE Ant. Wireless Prop. Lett., 17(6), 1109-1113. open in new tab
  5. Qu, L., Piao, H., Qu, Y., Kim, H.H., Kim, H. (2018). Circularly polarised MIMO ground radiation antennas for wearable devices. Electronics Lett., 54(4), 189-190. open in new tab
  6. Cheng, W., Li, D. (2017). Circularly polarised filtering monopole antenna based on miniaturised coupled filter. Electronics Lett., 53(11), 700-702. open in new tab
  7. Zahran, S.R., Hu, Z., Abdalla, M.A. (2017). A flexible circular polarized wide band slot antenna for indoor IoT applications. IEEE Int. Symp. Ant. Prop., 1163-1164. open in new tab
  8. Cao, Y., Hong, W., Deng, L., Li, S., Yin, L. (2016). A 2.4 GHz circular polarization rectenna with harmonic suppression for microwave power transmission. IEEE Int. Conf. IoT, 359-363. open in new tab
  9. Huang, F.J., Yo, T.C., Lee, C.M., Luo, C.H. (2012). Design of circular polarization antenna with harmonic suppression for rectenna application. IEEE Ant. Wireless Prop. Lett., 11, 592-595.
  10. Mener, S., Gillard, R., Roy, L. (2017). A dual-band dual-circular-polarization antenna for Ka-band satellite communications. IEEE Ant. Wireless Prop. Lett., 16, 274-277. open in new tab
  11. Han, J.H., Myung, N.H. (2014). Novel feed network for circular polarization antenna diversity. IEEE Ant. Wireless Prop. Lett., 13, 979-982.
  12. Lin, W., Wong, H. (2017). Wideband circular-polarization reconfigurable antenna with L-Shaped feeding probes. IEEE Ant. Wireless Prop. Lett., 16, 2114-2117. open in new tab
  13. Ogurtsov, S., Koziel, S. (2016). Automated design of circularly polarized microstrip patch antennas with improved axial ratio. Loughborough Ant. Prop. Conf., 1-5. open in new tab
  14. Mohammadi, S., Nourinia, J., Ghobadi, C., Pourahmadazar, J., Shokri, M. (2013). Compact broadband circularly polarized slot antenna using two linked elliptical slots for C-band applications. IEEE Ant. Wireless Prop. Lett., 12, 1094-1097. open in new tab
  15. Wong, K.L., Huang, C.C., Chen, W.S. (2002). Printed ring slot antenna for circular polarization. IEEE Trans. Ant. Prop., 50(1), 75-77.
  16. Wang, C.J., Shih, M.H., Chen, L.T. (2015). A wideband open-slot antenna with dual-band circular polarization. IEEE Ant. Wireless Prop. Lett., 14, 1306-1309. open in new tab
  17. Kumar, A., Deegwal, J.K., Sharma, M.M. (2018). Design of multi-polarised quad-band planar antenna with parasitic multistubs for multiband wireless communication. IET Microwaves, Ant. Prop., 12(5), 718-726. open in new tab
  18. Kovitz, J.M., Rajagopalan, H., Rahmat-Samii, Y. (2016). Circularly polarised half E-shaped patch antenna: a compact and fabrication-friendly design. IET Microwaves, Ant. Prop., 10(9), 932-938. open in new tab
  19. Wang, K.X., Wong, H. (2015). A circularly polarized antenna by using rotated-stair dielectric resonator. IEEE Ant. Wireless Prop. Lett., 14, 787-790. open in new tab
  20. Tang, H., Wang, K., Wu, R., Yu, C. (2016). ompact broadband CP monopole antenna with tilted branch. Electronics Lett., 52(21), 1739-1740. open in new tab
  21. Zhang, X.Y., Jiao, Y.C., Zhang, Z., Li, B. (2018). Miniaturised CP aperture antenna with tri-mode operation for broadening bandwidth. Electronics Lett., 54(3), 122-124. open in new tab
  22. Sun, Y.X., Leung, K.W., Mao, J.F. (2018). Dualfunction dielectric resonator as antenna and phase- delay-line load: designs of compact circularly polarized/differential antennas. IEEE Trans. Ant. Prop., 66(1), 414-419. open in new tab
  23. Ghassemi, M., Bakr, M., Sangary, N. (2013). Antenna design exploiting adjoint sensitivity-based geometry evolution. IET Microwaves Ant. Prop., 7(4), 268-276. open in new tab
  24. Toivanen, J.I., Makinen, R.A.E., Rahola, J., Jarvenpa, S., Yla-Oijala, P. (2010). Gradient-based shape optimisation of ultra-wideband antennas parameterised using splines. IET Microwaves, Ant. Prop., 4(9), 1406-1414. open in new tab
  25. Zhou, W., Liu, J., Long, Y. (2017). A broadband and high-gain planar complementary yagi array antenna with circular polarization. IEEE Trans. Ant. Prop., 65(3), 1446-1451. open in new tab
  26. Ahdi Rezaeieh, S., Abbosh, A., Antoniades, M.A. (2013). Compact CPW-fed planar monopole antenna with wide circular polarization bandwidth. IEEE Ant. Wireless Prop. Lett., 12, 1295-1298. open in new tab
  27. Nocedal, J., Wright, S. (2006). Numerical Optimization. 2nd edition, Springer, New York. open in new tab
  28. Conn, A., Gould, N.I.M., Toint, P.L. (2000). Trust-region methods. MPS-SIAM Series on Optimization, Philadelphia. open in new tab
  29. Koziel, S., Bekasiewicz, A. (2016). Multi-objective design of antennas using surrogate models. World Scientific. open in new tab
  30. CST Microwave Studio, ver. 2013, CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany, 2013. open in new tab
  31. Volakis, J., Chen, C.C., Fujimoto, K. (2010). Small Antennas: Miniaturization Techniques and Appli- cations. McGraw-Hill Professiona. open in new tab
  32. Koziel, S., Bekasiewicz, A. (2017). Expedited simulation-driven design optimization of UWB antennas by means of response features. Int. J. RF Microwave CAE, 27(6), 1-8. open in new tab
  33. Johanesson, D.O., Koziel, S., Bekasiewicz, A. (2017). An improved procedure for simulation-driven miniaturization of antenna structures. IEEE International Symposium on Antennas and Propagation, San Diego. open in new tab
  34. Wu, Z., Li, L., Li, Y., Chen, X. (2016). Metasurface superstrate antenna with wideband circular polarization for satellite communication application. IEEE Ant. Wireless Prop. Lett., 15, 374-377. open in new tab
  35. Fujimoto, T., Jono, K. (2014). Wideband rectangular printed monopole antenna for circular polarisa- tion, IET Microwaves, Ant. Prop., 8(9), 649-656. open in new tab
Verified by:
Gdańsk University of Technology

seen 108 times

Recommended for you

Meta Tags