Abstract
We prove that a stochastic (Markov) operator S acting on a Schatten class C_1 satisfies the Noether condition S'(A) = A and S'(A^2) = A^2, where A is a Hermitian bounded linear operator on a complex Hilbert space H, if and only if, S(E(G)XE(G)) = E(G)S(X)E(G) holds true for every Borel subset G of the real line R, where E(G) denotes the orthogonal projection coming from the spectral resolution of A. Similar results are obtained for stochastic one-parameter contiuous semigroups.
Citations
-
3
CrossRef
-
0
Web of Science
-
3
Scopus
Authors (2)
Cite as
Full text
download paper
downloaded 24 times
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.jmaa.2017.03.068
- License
- Copyright (2017 Elsevier Inc.)
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
no. 452,
edition 2,
pages 1395 - 1412,
ISSN: 0022-247X - Language:
- English
- Publication year:
- 2017
- Bibliographic description:
- Bartoszek W., Bartoszek K.: A Noether theorem for stochastic operators on Schatten classes// JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. -Vol. 452, iss. 2 (2017), s.1395-1412
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.jmaa.2017.03.068
- Verified by:
- Gdańsk University of Technology
seen 144 times