Aggregation properties of some zirconium phosphate loaded with dirhenium(III) complexes - Publication - Bridge of Knowledge

Search

Aggregation properties of some zirconium phosphate loaded with dirhenium(III) complexes

Abstract

One of the important areas of modern science is the selection of the right forms of drug delivery. Layered inorganic nanoparticles, such as zirconium phosphate, have proven themselves well in this area. The study of the properties of these systems and methods of their preparation makes it possible to determine a rational technology of their manufacture, storage conditions as well as suggest a possible mechanism of therapeutic action. The physical dimensions of the formed aggregates, morphology and structure are often the most influential factors for controlling the active surface area, reactivity, bioavailability and toxicity of nanoparticles. Aggregation properties of zirconium phosphate nanoparticles loaded with cluster rhenium(III) compounds with propionate ligands of different structure types (di-, tri- and tetra-carboxylates) and cisplatin were investigated by laser diffraction method in water. It was shown that the quantity and orientation of propionate ligands affect the aggregation properties of the investigated compounds. However, the presence of cisplatin in the composites reduced the aggregation abilities of the nanoparticles which indicate the formation of new complexes on their surfaces. After sonication, cisplatinrhenium compound composites had practically the same size-distribution curves. Our findings showed that the formation of different complexes with ZrP occurs on the surfaces depending from the structure of the rhenium substances.

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Cite as

Full text

download paper
downloaded 27 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
publikacja w in. zagranicznym czasopiśmie naukowym (tylko język obcy)
Published in:
Vaprosy Khimii i Khimicheskoi Tekhnologii edition 6, pages 72 - 76,
ISSN: 0321-4095
Language:
English
Publication year:
2018
Bibliographic description:
Slipkan A., Shtemenko, N., Bray R., Obarska-Pempkowiak H., Shtemenko, A.. Aggregation properties of some zirconium phosphate loaded with dirhenium(III) complexes. Vaprosy Khimii i Khimicheskoi Tekhnologii, 2018, , iss. 6, s.72-76
DOI:
Digital Object Identifier (open in new tab) 10.32434/0321-4095-2018-121-6-72-76
Bibliography: test
  1. Øàðóâàò³ íàíî÷àñòêè öèðêîí³é ã³äðîôîñôàòó ÿê ôîðìà óïàêîâêè äëÿ trans-Re 2 (RCOO) 2 Cl 4 / Ñë³ïêàíü À.Â., Êèòîâà Ä.ª., Øòåìåíêî Î.Â. // Âîïð. õèìèè è õèì. òåõíî- ëîãèè. -2016. -¹ 3. -Ñ.21-25. open in new tab
  2. Ñë³ïêàíü À.Â., Êèòîâà Ä.ª., Øòåìåíêî Î.Â. Íàíî- ÷àñòêè öèðêîí³é ã³äðîôîñôàòó ÿê ôîðìà óïàêîâêè äëÿ äèãà- ëîãåíîòåòðà--êàðáîêñèëàò³â äèðåí³þ(²²²) / Óêð. õ³ì. aeóð- íàë. -2017. -Ò.83. -¹ 7-8. -Ñ.35-41.
  3. Ñë³ïêàíü À.Â., Êèòîâà Ä.ª., Øòåìåíêî Î.Â. Íàíî- ÷àñòêè öèðêîí³é ã³äðîôîñôàòó, íàâàíòàaeåí³ òðèõëîðîòðè- ì-êàðáîêñèëàòàìè äèðåí³þ(²²²) // Âîïð. õèìèè è õèì. òåõ- íîëîãèè. -2018. -¹ 2. -Ñ.39-45. 4. Synthesis, X-ray structure, interactions with DNA, remarkable in vivo tumor growth suppression and nephroprotective activity of cis-tetrachloro-dipivalato dirhenium(III) / Shtemenko N.I., Chifotides H.T., Domasevich K.V., et al. // J. Inorg. Biochem. -2013. -Vol.129. -P.127-134. 5. Liposomes loaded with a dirhenium compound and cisplatin: preparation, properties and improved in vivo anticancer activity / Li Z., Shtemenko N.I., Yegorova D.Y., et al. // J. Liposome Res. -2015. -Vol.25. -P.78-87. 6. Fabrication of aggregation-induced emission based fluorescent nanoparticles and their biological imaging application: recent progress and perspectives / Yang B., Zhang X., Zhang X., et al. // Mater. Today. -2016. -Vol.19. -P.284-291.
  4. Rosicka D., Sembera J. Changes in the nanoparticle aggregation rate due to the additional effect of electrostatic and magnetic forces on mass transport coefficients // Nanoscale Res. Lett. -2013. -Vol.8. -P.20-29. open in new tab
  5. Hotze E.M., Phenrat T., Lowry G.V. Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment // J. Environ. Qual. -2010. -Vol.39. - P.1909-1924. 9. Stochastic probability modeling to predict the environmental stability of nanoparticles in aqueous suspension / Mackay C.E., Johns M., Salatas J.H., et al. // Integr. Environ. Assess. Manage. -2006. -Vol.2. -No. 3. -P.293-298. 10. Alzoubi F.Y., Abu Bidier S.A. Characterization and aggregation of silver nanoparticles dispersed in an aqueous solution // Chin. J. Phys. -2013. -Vol.51. -No. 2. -P.378-387.
  6. Øòåìåíêî À.Â., Êîòåëüíèêîâà À.Ñ. Îáðàçîâàíèå áèÿäåðíûõ ãàëîãåíîêàðáîêñèëàòíûõ ñîåäèíåíèé ðåíèÿ ñ ÷åòâåðíîé ñâÿçüþ ìåòàëë-ìåòàëë // Èçâåñò. ÀÍ ÑÑÑÐ. Ñåð. Õèìè÷åñêàÿ. -1980. -Ñ.2630-2632. 12. Cotton F.A., Gage L.D., Rice C.E. Some new types of quadruply bonded dirhenium compounds containing bridging carboxylato groups // Inorg. Chem. -1979. -Vol.18. -No. 4. -P.1138-1142. 13. Synthesis and X-ray crystal structure of the dirhenium complex Re 2 (i-C 3 H 7 COO) 4 Cl 2 and its interactions with the DNA purine nucleobases / Shtemenko A.V., Chifotides H.T., Yegorova D.E., et al. // J. Inorg. Biochem. -2015. -Vol.153. -P.114- 120. 14. Áðàóýð Ã. Ðóêîâîäñòâî ïî íåîðãàíè÷åñêîìó ñèíòå- çó. -Ì. :Ìèð, 1995. -Ò.5. -1825 ñ.
  7. Marti A.A., Colon J.L. Direct ion exchange of tris(2,2'- bipyridine) ruthenium(II) into an -zirconium phosphate framework // Inorg. Chem. -2003. -Vol.42. -P.2830-2832. open in new tab
  8. Slipkan A.V., Kytovà D.E., Shtemenko A.V. Sharuvati nanochastky tsyrkoniyu gidrophosphatu yak forma upakovky dl'ya tran s-Re 2 (RCOO) 2 Cl 4 [Layere d zirco n ium phosphate n an oparticles as a form of packaging for the trans- Re 2 (RCOO) 2 Cl 4 ]. open in new tab
  9. Voprosy Khimii i Khimicheskoi Tekhnologii, 2016, no. 3, pp. 21-25. (in Ukrainian). open in new tab
  10. Slipkan A.V., Kytovà D.E., Shtemenko A.V. Nanochastki tsirkonii gidrofosfatu yak forma upakovky dl'ya digalogenotetra- open in new tab
  11. -carboxilativ direniyu(III) [Zirconium phosphate nanoparticles as a form of packaging for dihalogenotere--carboxylates of dirhenium(III)]. open in new tab
  12. Ukrainian Chemistry Journal, 2017, vol. 83, no. 7-8, pp. 35-41. (in Ukrainian). open in new tab
  13. Slipkan A.V., Kytovà D.E., Shtemenko A.V. open in new tab
  14. Nanochastynky tsyrkonii gidrofofsfatu, navantazheni trykhlorotry- -karboksylatamy dyreniyu(III) [Nanoparticles of zirconium phosphate loaded with trichlorotri--carboxylates of dirhenium(III)]. open in new tab
  15. Voprosy Khimii i Khimicheskoi Tekhnologii, 2018, no. 2, pp. 39-45. (in Ukrainian). open in new tab
  16. Shtemenko N.I., Chifotides H.T., Domasevitch K.V., Golichenko A.A., Babiy S.A., Li Z., Paramonova K.V., Shtemenko A.V., Dunbar K.R. Synthesis, X-ray structure, interactions with DNA, remarkable in vivo tumor growth suppression and nephroprotective activity of cis-tetrachloro-dipivalato dirhenium(III). Journal of Inorganic Biochemistry, 2013, vol. 129, pp. 127-134. open in new tab
  17. Li Z., Shtemenko N.I., Yegorova D.Y., Babiy S.O., Brown A.J., Yang T., Shtemenko A.V., Dunbar K.R. Liposomes loaded with a dirhenium compound and cisplatin: preparation, properties and improved in vivo anticancer activity. Journal of Liposome Research, 2015, vol. 25, pp. 78-87. open in new tab
  18. Yang B., Zhang X., Zhang X., Huang Z., Wei Y., Tao L. Fabrication of aggregation-induced emission based fluorescent nanoparticles and their biological imaging application: recent progress and perspectives. Materials Today, 2016, vol. 19, pp. 284-291. open in new tab
  19. Rosicka D., Sembera J. Changes in the nanoparticle aggregation rate due to the additional effect of electrostatic and magnetic forces on mass transport coefficients. Nanoscale Research Letters, 2013, vol. 8, pp. 20. open in new tab
  20. Hotze E.M., Phenrat T., Lowry G.V. Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. Journal of Environmental Quality, 2010, vol. 39, pp. 1909-1924. open in new tab
  21. Mackay C.E., Johns M., Salatas J.H., Bessinger B., Perri M. Stochastic probability modeling to predict the environmental stability of nanoparticles in aqueous suspension. Integrated Environmental Assessment and Management, 2006, vol. 2, pp. 293-298. open in new tab
  22. Alzoubi F.Y., Abu Bidier S.A. Characterization and aggregation of silver nanoparticles dispersed in an aqueous solution. Chinese Journal of Physics, 2013, vol. 51, no. 2, pp. 378-387. 11. Shtemenko A.V., Kotelnikova A.S. The formation of binuclear halocarboxylate compounds of rhenium with the metal- metal quadruple bond. Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, 1980, pp. 2630-2632. (in Russian). open in new tab
  23. Cotton F.A., Gage L.D., Rice C.E. Some new types of quadruply bonded dirhenium compounds containing bridging carboxylato groups. Inorganic Chemistry, 1979, vol. 18, pp. 1138- 1142. 13. Shtemenko A.V., Chifotides H.T., Yegorova D.E., Shtemenko N.I., Dunbar K.R. Synthesis and X-ray crystal structure of the dirhenium complex Re 2 (i-C 3 H 7 COO) 4 Cl 2 and its interactions with the DNA purine nucleobases. Journal of Inorganic Biochemistry, 2015, vol. 153, pp. 114-120.
  24. Brauer G., Guide to inorganic synthesis. Mir, Moscow, 1995, vol. 5. 1825 p. (in Russian).
  25. Marti A.A., Colon J.L. Direction exchange of tris (2, 2'-bipyridine) ruthenium (II) into an -zirconium phosphate framework. Inorganic Chemistry, 2003, vol. 42, pp. 2830-2832. open in new tab
Verified by:
Gdańsk University of Technology

seen 103 times

Recommended for you

Meta Tags