An experimental investigation on the effect of new continuous core-baffle geometry on the mixed convection heat transfer in shell and coil heat exchanger - Publication - Bridge of Knowledge

Search

An experimental investigation on the effect of new continuous core-baffle geometry on the mixed convection heat transfer in shell and coil heat exchanger

Abstract

In the article, the authors presented the influence of continuous core-baffle geometry at mixed convection heat transfer in shell and coil heat exchanger. Experiments were carried out for a large power range, i.e. from 100W to 1200W and mass flow rates ranging from 0.01 kg/s to 0.025 kg/s. During the experiments, the mass flow rate of cooling water, the temperature of water at the inlet and outlet as well as the wall temperature of the coil (at 6 points over the coil's circumference) and the water temperature in the jacket of the exchanger (at 10 points along the shell height) were measured. The article confirmed that new form of continuous baffle geometry can successfully enhance heat transfer, but rather for small values of mass flow rates. It was also noted that the inlet/outlet configuration has significant influences on the fluid flow as well as temperature distribution at the jacket of the heat exchanger. The new experimental Nusselt numbers correlation at the shell side of the heat exchanger with continuous core-baffles was presented.

Citations

  • 2 2

    CrossRef

  • 0

    Web of Science

  • 2 4

    Scopus

Cite as

Full text

download paper
downloaded 86 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
APPLIED THERMAL ENGINEERING no. 136, pages 237 - 251,
ISSN: 1359-4311
Language:
English
Publication year:
2018
Bibliographic description:
Andrzejczyk R., Muszyński T.: An experimental investigation on the effect of new continuous core-baffle geometry on the mixed convection heat transfer in shell and coil heat exchanger// APPLIED THERMAL ENGINEERING. -Vol. 136, (2018), s.237-251
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.applthermaleng.2018.03.003
Bibliography: test
  1. S.A. Berger, L. Talbot, L.S. Yao, Flow in curved pipes, Annu. Rev. Fluid Mech. 15 (1983) 461-512. open in new tab
  2. T.A. Pimenta, J. Campos, Friction losses of Newtonian and non-Newtonian fluids flowing in laminar regime in a helical coil, Exp. Therm. Fluid Sci. 36 (2012) 194-204. open in new tab
  3. N. Ghorbani Mianroudi, M. Gorji, H. Taherian, Experimental Study of Mixed Convection Shell-and-Coil Heat Exchanger, (2008) 129-135.
  4. http://dx.doi.org/10.1115/HT2008-56504. open in new tab
  5. R.K. Patil, B.W. Shende, P.K. Ghosh, DESIGNING A HELICAL-COIL HEAT EXCHANGER., Chem. Eng. (New York). 89 (1982) 85-88.
  6. A. Zachár, Analysis of coiled-tube heat exchangers to improve heat transfer rate with spirally corrugated wall, Int. J. Heat Mass Transf. 53 (2010) 3928-3939. open in new tab
  7. T. Muszynski, R. Andrzejczyk, Heat transfer characteristics of hybrid microjet - Microchannel cooling module, Appl. Therm. Eng. 93 (2016) 1360-1366. doi:10.1016/j.applthermaleng.2015.08.085. open in new tab
  8. T. Muszynski, S.M. Koziel, Parametric study of fluid flow and heat transfer over louvered fins of air heat pump evaporator, Arch. Thermodyn. 37 (2016) 45-62. doi:10.1515/aoter-2016-0019. open in new tab
  9. S. Brückner, S. Liu, L. Miró, M. Radspieler, L.F. Cabeza, E. Lävemann, Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies, Appl. Energy. 151 (2015) 157-167. doi:10.1016/j.apenergy.2015.01.147. open in new tab
  10. D. Mikielewicz, R. Andrzejczyk, B. Jakubowska, J. Mikielewicz, Analytical Model With Nonadiabatic Effects for Pressure Drop and Heat Transfer During Boiling and Condensation Flows in Conventional Channels and Minichannels, Heat Transf. Eng. 37 (2016) 1158-1171. open in new tab
  11. T. Bohdal, H. Charun, M. Sikora, Empirical study of heterogeneous refrigerant condensation in pipe minichannels, Int. J. Refrig. 59 (2015) 210-223. doi:10.1016/j.ijrefrig.2015.07.002. open in new tab
  12. T. Muszynski, R. Andrzejczyk, C.A. Dorao, Detailed experimental investigations on frictional pressure drop of R134a during flow boiling in 5 mm diameter channel: The influence of acceleration pressure drop component, Int. J. Refrig. 82 (2017). doi:10.1016/j.ijrefrig.2017.05.029. open in new tab
  13. R. Andrzejczyk, T. Muszynski, C.A. Dorao, Experimental investigations on adiabatic frictional pressure drops of R134a during flow in 5 mm diameter channel, Exp. Therm. Fluid Sci. 83 (2017) 78-87. doi:10.1016/j.expthermflusci.2016.12.016. open in new tab
  14. R.A. Białecki, T. Burczyński, A. Długosz, W. Kuś, Z. Ostrowski, Evolutionary shape optimization of thermoelastic bodies exchanging heat by convection and radiation, Comput. Methods Appl. Mech. Eng. 194 (2005) 1839-1859. doi:10.1016/j.cma.2004.07.004. open in new tab
  15. W.P. Adamczyk, P. Kozołub, G. Węcel, A. Klimanek, R.A. Białecki, T. Czakiert, Modeling oxy-fuel combustion in a 3D circulating fluidized bed using the hybrid Euler-Lagrange approach, Appl. Therm. Eng. 71 (2014) 266-275. doi:10.1016/j.applthermaleng.2014.06.063. open in new tab
  16. T. Muszynski, Design And Experimental Investigations Of A Cylindrical Microjet Heat Exchanger For Waste Heat Recovery Systems, Appl. Therm. Eng. (2017). doi:10.1016/j.applthermaleng.2017.01.021. open in new tab
  17. S. Liu, M. Sakr, A comprehensive review on passive heat transfer enhancements in pipe exchangers, Renew. Sustain. Energy Rev. 19 (2013) 64-81. open in new tab
  18. A. Bartwal, A. Gautam, M. Kumar, C.K. Mangrulkar, S. Chamoli, Thermal performance intensification of a circular heat exchanger tube integrated with compound circular ring-metal wire net inserts, Chem. Eng. Process. Process Intensif. 124 (2018) 50-70. open in new tab
  19. S. Chamoli, R. Lu, P. Yu, Thermal characteristic of a turbulent flow through a circular tube fitted with perforated vortex generator inserts, Appl. Therm. Eng. 121 (2017) 1117-1134. open in new tab
  20. N. Acharya, M. Sen, H.-C. Chang, Analysis of heat transfer enhancement in coiled- tube heat exchangers, Int. J. Heat Mass Transf. 44 (2001) 3189-3199. doi:10.1016/S0017-9310(01)00002-3. open in new tab
  21. P. Naphon, Thermal performance and pressure drop of the helical-coil heat exchangers with and without helically crimped fins, Int. Commun. Heat Mass Transf. 34 (2007) 321-330. doi:10.1016/j.icheatmasstransfer.2006.11.009. open in new tab
  22. C. Yildiz, Y. Bíçer, D. Pehlívan, Influence of fluid rotation on the heat transfer and pressure drop in double-pipe heat exchangers, Appl. Energy. 54 (1996) 49-56. doi:10.1016/0306-2619(95)00070-4. open in new tab
  23. C. Yildiz, Y. Biçer, D. Pehlivan, Heat transfer and pressure drop in a heat exchanger with a helical pipe containing inside springs, Energy Convers. Manag. 38 (1997) 619- 624. doi:10.1016/S0196-8904(96)00040-4. open in new tab
  24. A.J.K. Thomas, R.C. Bindeesh, N.S. Thomas, P. Unaira, K.B. Radhakrishnan, Experimental Investigation on Heat Transfer Augmentation in Helical Coil Heat Exchanger Using Wire Coil/Spring Inserts, Imp. J. Interdiscip. Res. 2 (2016).
  25. D. Panahi, K. Zamzamian, Heat transfer enhancement of shell-and-coiled tube heat exchanger utilizing helical wire turbulator, Appl. Therm. Eng. 115 (2017) 607-615. doi:10.1016/j.applthermaleng.2016.12.128. open in new tab
  26. J. Avina, The modeling of a natural convection heat exchanger in a solar domestic hot water system, University of Wisconsin--Madison, 1995.
  27. R. Kharat, N. Bhardwaj, R.S. Jha, Development of heat transfer coefficient correlation for concentric helical coil heat exchanger, Int. J. Therm. Sci. 48 (2009) 2300-2308. open in new tab
  28. M.R. Salem, K.M. Elshazly, R.Y. Sakr, R.K. Ali, Effect of Coil Torsion on Heat Transfer and Pressure Drop Characteristics of Shell and Coil Heat Exchanger, J. Therm. Sci. Eng. Appl. 8 (2015) 11015. doi:10.1115/1.4030732. open in new tab
  29. Q.S. Mahdi, L.D.S.A. Fattah, Experimental and Numerical Investigation to Evaluate the Performance of Helical Coiled Tube Heat Exchanger, J. Eng. Dev. 18 (2014). open in new tab
  30. R. Andrzejczyk, T. Muszynski, Thermodynamic and geometrical characteristics of mixed convection heat transfer in the shell and coil tube heat exchanger with baffles, Appl. Therm. Eng. 121 (2017) 115-125. doi:10.1016/j.applthermaleng.2017.04.053. open in new tab
  31. R. Andrzejczyk, T. Muszynski, Performance Analyses Of Helical Coil Heat Exchangers. The Effect Of External Coil Surface Modification On Heat Exchanger Effectiveness, Arch. Thermodyn. (2016). doi:AOT-00010-2016-04. open in new tab
  32. Y.A. Cengel, Introduction to thermodynamics and heat transfer, McGraw-Hill New York, 1997.
  33. G.F. Hewitt, G.L. Shires, T.R. Bott, Process heat transfer, CRC press Boca Raton, FL, 1994.
  34. L.J. Shah, S. Furbo, Entrance effects in solar storage tanks, Sol. Energy. 75 (2003) 337-348. open in new tab
  35. H.D.I. Abarbanel, D.D. Holm, J.E. Marsden, T. Ratiu, Richardson Number Criterion for the Nonlinear Stability of Three-Dimensional Stratified Flow, Phys. Rev. Lett. 52 (1984) 2352-2355. doi:10.1103/PhysRevLett.52.2352. open in new tab
Sources of funding:
  • Statutory activity/subsidy
Verified by:
Gdańsk University of Technology

seen 151 times

Recommended for you

Meta Tags