Abstract
The letter presents an extremely compact frequency reconfigurable antenna diplexer based on fluidic channels for sub6 GHz applications. The proposed antenna diplexer is modelled by employing half-mode (HM) and quarter-mode (QM) substrateintegrated rectangular cavities, two slots, orthogonal feed lines, and fluidic vias. To comprehend the radiation mechanism, the equivalent circuit, electric field distributions, and frequency responses are analyzed. Utilization of HM and QM cavities that are loaded with slots results in an extremely compact antenna diplexer. Three fluidic vias are bored from the bottom plane of each cavity and filled with different dielectric liquids to enable frequency reconfigurability. For validation of the concept, an antenna diplexer is built and demonstrated. The constructed antenna prototype has a small footprint 0.078lg2 with 15% and 16% of reconfigurability in lower and upper frequency bands, respectively. The proposed antenna offers high-isolation exceeding 28 dB, realized gain better than > 3.8 dBi, front-to-back-ratio of > −18 dB, and cross-polarization level of > −18 dB. A good consistency is obtained in between full-wave simulations and measurement.
Citations
-
0
CrossRef
-
0
Web of Science
-
1
Scopus
Authors (4)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
IEEE Antennas and Wireless Propagation Letters
no. 23,
pages 3749 - 3753,
ISSN: 1536-1225 - Language:
- English
- Publication year:
- 2024
- Bibliographic description:
- Barik R. K., Wu X., Liu X., Kozieł S.: An Extremely Compact Frequency Reconfigurable Antenna Diplexer Employing Dielectric Liquids// IEEE Antennas and Wireless Propagation Letters -Vol. 23,iss. 11 (2024), s.3749-3753
- DOI:
- Digital Object Identifier (open in new tab) 10.1109/lawp.2024.3429499
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 14 times
Recommended for you
Frequency-Reconfigurable Hybrid SIW-Based Self-Diplexing Antenna Using Solid and Liquid Dielectric Loading
- M. G. Reddy,
- K. Subramanian,
- N. Pradhan
- + 1 authors