Block Conjugate Gradient Method with Multilevel Preconditioning and GPU Acceleration for FEM Problems in Electromagnetics
Abstract
In this paper a GPU-accelerated block conjugate gradient solver with multilevel preconditioning is presented for solving large system of sparse equations with multiple right hand-sides (RHSs) which arise in the finite-element analysis of electromagnetic problems. We demonstrate that blocking reduces the time to solution significantly and allows for better utilization of the computing power of GPUs, especially when the system matrix is complex-valued. We show that, for a complex-valued sparse matrix with over 1.2 million unknowns and sixteen righthand-sides, the block version of the preconditioned conjugategradient method using a single NVIDIA Tesla P100 accelerator is almost three times faster than a nonblocked version. Numerical tests have also shown that a CPU-only nonblocked complex implementation is unlikely to benefit much from blocking. Compared to an optimized CPU-only solver using an Intel Xeon E5-2680 v3 with twelve cores, the nonblocked GPU-accelerated version was 4.5 times faster, while the blocked version was 12.4 times faster.
Citations
-
1 0
CrossRef
-
0
Web of Science
-
1 1
Scopus
Authors (2)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
IEEE Antennas and Wireless Propagation Letters
no. 17,
pages 1039 - 1042,
ISSN: 1536-1225 - Language:
- English
- Publication year:
- 2018
- Bibliographic description:
- Dziekoński A., Mrozowski M.: Block Conjugate Gradient Method with Multilevel Preconditioning and GPU Acceleration for FEM Problems in Electromagnetics// IEEE Antennas and Wireless Propagation Letters. -Vol. 17, nr. 6 (2018), s.1039-1042
- DOI:
- Digital Object Identifier (open in new tab) 10.1109/lawp.2018.2830124
- Verified by:
- Gdańsk University of Technology
seen 165 times