Brownian Motion in Optical Tweezers, a Comparison between MD Simulations and Experimental Data in the Ballistic Regime - Publication - Bridge of Knowledge

Search

Brownian Motion in Optical Tweezers, a Comparison between MD Simulations and Experimental Data in the Ballistic Regime

Abstract

The four most popular water models in molecular dynamics were studied in large-scale simulations of Brownian motion of colloidal particles in optical tweezers and then compared with experimental measurements in the same time scale. We present the most direct comparison of colloidal polystyrene particle diffusion in molecular dynamics simulations and experimental data on the same time scales in the ballistic regime. The four most popular water models, all of which take into account electrostatic interactions, are tested and compared based on yielded results and resources required. Three different conditions were simulated: a freely moving particle and one in a potential force field with two different strengths based on 1 pN/nm and 10 pN/nm. In all cases, the diameter of the colloidal particle was 50 nm. The acquired data were compared with experimental measurements performed using optical tweezers with position capture rates as high as 125 MHz. The experiments were performed in pure water on polystyrene particles with a 1 μm diameter in special microchannel cells.

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Authors (4)

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Polymers no. 15,
ISSN: 2073-4360
Language:
English
Publication year:
2023
Bibliographic description:
Zembrzycki K., Pawłowska S., Pierini F., Kowalewski T. A.: Brownian Motion in Optical Tweezers, a Comparison between MD Simulations and Experimental Data in the Ballistic Regime// Polymers -,iss. 3 (2023), s.787-
DOI:
Digital Object Identifier (open in new tab) 10.3390/polym15030787
Sources of funding:
  • This research was funded by the Polish NCN grant No. 2015/19/N/ST8/03931. This study was partially supported by the LIDER program funded by the National Center for Research and Development (NCBiR) under NCBiR Grant No. LIDER/28/0067/L-7/15/NCBR/2016.
Verified by:
Gdańsk University of Technology

seen 53 times

Recommended for you

Meta Tags