Changes of Conformation in Albumin with Temperature by Molecular Dynamics Simulations - Publication - MOST Wiedzy

Search

Changes of Conformation in Albumin with Temperature by Molecular Dynamics Simulations

Abstract

This work presents the analysis of the conformation of albumin in the temperature range of 300K – 312K, i.e., in the physiological range. Using molecular dynamics simulations, we calculate values of the backbone and dihedral angles for this molecule. We analyze the global dynamic properties of albumin treated as a chain. In this range of temperature, we study parameters of the molecule and the conformational entropy derived from two angles that reflect global dynamics in the conformational space. A thorough rationalization, based on the scaling theory, for the subdiffusion Flory–De Gennes type exponent of 0.4 unfolds in conjunction with picking up the most appreciable fluctuations of the corresponding statistical-test parameter. These fluctuations coincide adequately with entropy fluctuations, namely the oscillations out of thermodynamic equilibrium. Using Fisher’s test, we investigate the conformational entropy over time and suggest its oscillatory properties in the corresponding time domain. Using the Kruscal–Wallis test, we also analyze differences between the root mean square displacement of a molecule at various temperatures. Here we show that its values in the range of 306K – 309K are different than in another temperature. Using the Kullback–Leibler theory, we investigate differences between the distribution of the root mean square displacement for each temperature and time window.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Authors (5)

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
ENTROPY-SWITZ no. 22, pages 1 - 21,
ISSN: 1099-4300
Language:
English
Publication year:
2020
Bibliographic description:
Weber P., Bełdowski P., Domino K., Ledziński D., Gadomski A.: Changes of Conformation in Albumin with Temperature by Molecular Dynamics Simulations// ENTROPY-SWITZ -Vol. 22,iss. 4 (2020), s.1-21
DOI:
Digital Object Identifier (open in new tab) 10.3390/e22040405
Bibliography: test
  1. Grimaldo, M.; Roosen-Runge, F.; Zhang, F.; Schreiber, F.; Seydel, T. Dynamics of proteins in solution. Quarter. Rev. Biophys. 2019, 52, e7. open in new tab
  2. Rubinstein, M.; Colby, R.H. Polymer Physics; Oxford University Press: Oxford, UK, 2003.
  3. De Gennes, P.G. Scaling Concepts in Polymer Physics; open in new tab
  4. Gadomski, A. On (sub) mesoscopic scale peculiarities of diffusion driven growth in an active matter confined space, and related (bio) material realizations. Biosystems 2019, 176, 56-58. open in new tab
  5. Metzler, R.; Jeon, J.H.; Cherstvy, A.G.; Barkai, E. Anomalous diffusion models and their properties: Non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 2014, 16, 24128. open in new tab
  6. Weber, P.; Bełdowski, P.; Bier, M.; Gadomski, A. Entropy Production Associated with Aggregation into Granules in a Subdiffusive Environment. Entropy 2018, 20, 651. open in new tab
  7. Flory, P. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, USA, 1953.
  8. Doi, M.; Edwards, S.F. The Theory of The Polymer Dynamics. In The International Series of Monographs on Physics; Oxford University Press: New York, NY, USA, 1986; pp. 24-32.
  9. Bhattacharya, A.A.; Curry, S.; Franks, N.P. Binding of the General Anesthetics Propofol and Halothane to Human Serum Albumin. J. Biol. Chem. 2000, 275, 38731-38738. open in new tab
  10. Oates, K.M.N.; Krause, W.E.; Jones, R.L.; Colby, R.H. Rheopexy of synovial fluid and protein aggregation. J. R. Soc. Interface 2006, 3, 167-174. open in new tab
  11. Rebenda, D.;Čípek, P.; Nečas, D.; Vrbka, M.; Hartl, M. Effect of hyaluronic acid on friction of articular cartilage. Eng. Mech. 2018, 24, 709-712. open in new tab
  12. Seror, J.; Zhu, L.; Goldberg, R.; Day, A.J.; Klein, J. Supramolecular synergy in the boundary lubrication of synovial joints. Nat. Commun. 2015, 6, 6497, doi:10.1038/ncomms7497. open in new tab
  13. Katta, J.; Jin, Z.; Ingham, E.; Fisher, J. Biotribology of articular cartilage-A review of the recent advances. Med. Eng. Phys. 2000, 30, 1349-1363. open in new tab
  14. Moghadam, M.N.; Abdel-Sayed, P.; Camine, V.M.; Pioletti, D.P. Impact of synovial fluid flow on temperature regulation in knee cartilage. J. Biomech. 2015, 48, 370-374. open in new tab
  15. Liwo, A.; Ołdziej, S.; Kaźmierkiewicz, R.; Groth, M.; Czaplewski, C. Design of a knowledge-based force field for off-latice simulations of protein structure. Acta Biochim. Pol. 1997 44, 527-548. open in new tab
  16. Havlin, S.; Ben-Avraham, D. Diffusion in disordered media. Adv. Phys. 2002, 51, 187-292. open in new tab
  17. Bhattacharjee, S.M.; Giacometti, A.; Maritan, A. Flory theory for polymers. J. Phys. Condens. Matter 2013, 25, 503101. open in new tab
  18. Baxa, M.C.; Haddadian, E.J.; Jumper, J.M.; Freed, K.F.; Sosnick, T.R. Loss of conformational entropy in protein folding calculated using realistic ensembles and its implications for NMR-based calculations. Proc. Natl. Acad. Sci. USA 2014 111, 15396-15401. open in new tab
  19. Ahdesmaki, M.; Lahdesmaki, H.; Yli-Harja, O. Robust Fisher's test for periodicity detection in noisy biological time series. In Proceedings of the IEEE International Workshop on Genomic Signal Processing and Statistics, Tuusula, Finland, 10-12 June 2007. open in new tab
  20. Wichert, S.; Fokianos, K.; Strimmer, K. Identifying periodically expressed transcripts in microarray time series data. Bioinformatics 2004, 20, 5-20. open in new tab
  21. Kanji, G.K. 100 Statiatical Tests; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 2006.
  22. Conover, W.J. Practical Nonparametric Statistics, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1980.
  23. Gupta, A.; Parameswaran, S.; Lee, C.-H. Classification of electroencephalography signals for different mental activities using Kullback-Leibler divergence. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, 19-24 April 2009. open in new tab
  24. Domino, K.; Błachowicz, T.; Ciupak, M. The use of copula functions for predictive analysis of correlations between extreme storm tides. Physica A 2014, 413, 489-497. open in new tab
  25. Tanner, J.J. Empirical power laws for the radii of gyration of protein oligomers. Acta Crystallogr. D Struct. Biol. 2016, 72, 1119-1129. open in new tab
  26. Korasick, D.A.; Tanner, J.J. Determination of protein oligomeric structure from small-angle X-ray scattering. Protein Sci. 2018, 27, 814-824. open in new tab
  27. De Bruyn, P.; Hadži, S.; Vandervelde, A.; Konijnenberg, A.; Prolič-Kalinšek, M.; Sterckx, Y.G.J.; Sobott, F.; Lah, J.; Van Melderen L.; Loris, R. Thermodynamic Stability of the Transcription Regulator PaaR2 from Escherichia coli O157:H7. Biophys. J. 2019, 116, 1420-1431. open in new tab
  28. Durell, S.R.; Ben-Naim, A. Hydrophobic-Hydrophilic Forces in Protein Folding. Biopolymers 2017, 107, e23020. open in new tab
  29. Rezaei-Tavirani, M.; Moghaddamnia, S.H.; Ranjbar, B.; Amani, M.; Marashi, S.A. Conformational Study of Human Serum Albumin in Pre-denaturation Temperatures by Differential Scanning Calorimetry, Circular Dichroism and UV Spectroscopy. J. Biochem. Mol. Biol. 2006 39, 530-536. open in new tab
  30. Isaacson, J.; Lubensky, T.C. Flory exponents for generalized polymer problems. J. Phys. Lett. 1980, 41, L-469-L-471. open in new tab
  31. Krieger, E.; Vriend, G. New ways to boost molecular dynamics simulations. J. Comput. Chem. 2015, 36, 996-1007. open in new tab
  32. Mark, P.; Nilsson, L. Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K. J. Phys. Chem. A 2001, 105, 9954-9960. open in new tab
  33. Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M.C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; et al. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 2003, 24, 1999-2012. open in new tab
  34. Baruah, A.; Rani, P.; Biswas, P. Conformational Entropy of Intrinsically Disordered Proteins from Amino Acid Triads. Sci. Rep. 2015, 5, 11740. open in new tab
  35. SciLab. Available online: https://www.scilab.org (accessed on 30 April 2017). c 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Verified by:
Gdańsk University of Technology

seen 25 times

Recommended for you

Meta Tags