Characteristics of La 0.8 Sr 0.2 Ga 0.8 Mg 0.2 O 3-δ -supported micro-tubular solid oxide fuel cells with LaCo 0.4 Ni 0.6-x Cu x O 3-δ cathodes
Abstract
In this study, micro-tubular solid oxide fuel cells (T-SOFCs) with extruded La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) electrolyte as the mechanical support and LaCo0.4Ni0.6O3-δ (LCNO) or LaCo0.4Ni0.4Cu0.2O3-δ (LCNCO) as cathodes were prepared and characterized. Partial substitution of Cu for the Ni-ion positions in the LCNO lattices was found to significantly enhance the densification and accelerate the grain growth. The porosity-corrected electrical conductivity was significantly increased from 1275 S/cm for LCNO ceramic to 1537 S/cm for LCNCO ceramic, because the acceptor doping was compensated by the formation of hole carriers that produced additional polarons and significantly augmented the electrical conductivity. SOFCs with three configurations were built in this study, including Cell A that had a lanthanum-doped ceria (LDC) buffer layer inserted between the LSGM electrolyte and the LCNCO cathode, Cell B that used an LCNO-LSGM composite cathode, and Cell C that featured an LCNCO-LSGM composite cathode. Among the three cells, Cell C with 263 μm of LSGM electrolyte possessed the lowest Ohmic resistance of 0.89 Ω cm2, a polarization resistance of 0.69 Ω cm2, and the highest maximum power density of 178 mW cm−2 at 750 °C.
Citations
-
5
CrossRef
-
0
Web of Science
-
7
Scopus
Authors (4)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
no. 43,
pages 5703 - 5713,
ISSN: 0360-3199 - Language:
- English
- Publication year:
- 2018
- Bibliographic description:
- Liu Y., Wang S., Hsu Y., Jasiński P.: Characteristics of La 0.8 Sr 0.2 Ga 0.8 Mg 0.2 O 3-δ -supported micro-tubular solid oxide fuel cells with LaCo 0.4 Ni 0.6-x Cu x O 3-δ cathodes// INTERNATIONAL JOURNAL OF HYDROGEN ENERGY -Vol. 43,iss. 11 (2018), s.5703-5713
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.ijhydene.2018.01.170
- Verified by:
- Gdańsk University of Technology
seen 95 times
Recommended for you
Characteristics of La0.8Sr0.2Ga0.8Mg0.2O3-delta -supported micro-tubular solid oxide fuel cells with bi-layer and tri-layer electrolytes
- Y. Liu,
- S. Wang,
- Y. Hsu
- + 1 authors
High-performance NdSrCo2O5+δ–Ce0.8Gd0.2O2-δ composite cathodes for electrolyte-supported microtubular solid oxide fuel cells
- S. Wang,
- Y. Hsu,
- Y. Liao
- + 2 authors
Design and characterization of apatite La9.8Si5.7Mg0.3O26±δ-based micro-tubular solid oxide fuel cells
- S. Wang,
- Y. Hsu,
- P. Hsia
- + 2 authors
High-performance anode-supported solid oxide fuel cells with co-fired Sm0.2Ce0.8O2-δ/La0.8Sr0.2Ga0.8Mg0.2O3−δ/Sm0.2Ce0.8O2-δ sandwiched electrolyte
- S. Wang,
- H. Lu,
- Y. Hsu
- + 1 authors