Comparative Study of Balancing SRT by Using Modified ASM2d in Control and Operation Strategy at Full-Scale WWTP - Publication - Bridge of Knowledge

Search

Comparative Study of Balancing SRT by Using Modified ASM2d in Control and Operation Strategy at Full-Scale WWTP

Abstract

Detailed knowledge on the composition of the influent going into the wastewater treatment system is essential for the development of a reliable computer model. In the context of WWTPs (wastewater treatment plants), the wastewater characteristics are not only important for activated sludge system modelling, but also have an impact on the appropriate control of single unit operations. The aim of this study was to evaluate the concepts of COD (chemical oxygen demand) fractionation measurement in municipal wastewater with a respirometric method in control, and modelling the biological treatment processes at WWTP using the modified Activated Sludge Model no. 2d (ASM2d) developed by Drewnowski and Makinia. The batch OUR (oxygen uptake rate) test results and COD measurements obtained at BNR plant (96,000 m3/d) in Gdansk (Poland), were compared and evaluated with the main BNR (biological nutrient removal) WWTP (144,000 m3/d) located in Malaga (Spain). Respirometric tests and COD fractionation provided the experimental database for the comparison of the wastewater characteristics and model predictions at both large WWTPs. Some parameters, such as the heterotrophic growth yield (YH) coefficient, required calibration/validation of the range (YH = 0.64 and 0.74 gCOD/gCOD for Gda´nsk and Malaga WWTP, respectively) to fit the modified ASM2d. The crucial issue when dealing with the newly developed model and proposed wastewater characterization for both study plants were extremely low and high values of the XS/XI ratio, which can be used to control full-scale WWTP and balance the solid retention time (SRT) in activated sludge systems.

Citations

  • 1 3

    CrossRef

  • 0

    Web of Science

  • 1 5

    Scopus

Authors (6)

Cite as

Full text

download paper
downloaded 50 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Water no. 11, pages 485 - 503,
ISSN: 2073-4441
Language:
English
Publication year:
2019
Bibliographic description:
Drewnowski J., Mąkinia J., Szaja A., Łagód G., Kopeć Ł., Aguilar J.: Comparative Study of Balancing SRT by Using Modified ASM2d in Control and Operation Strategy at Full-Scale WWTP// Water -Vol. 11,iss. 3 (2019), s.485-503
DOI:
Digital Object Identifier (open in new tab) 10.3390/w11030485
Bibliography: test
  1. Henze, M.; Gujer, W.; Mino, T.; Van Loosdrecht, M. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3; open in new tab
  2. Damayanti, A.; Ujang, Z.; Salim, M.R.; Olsson, G.; Sulaiman, A.Z. Respirometric analysis of activated sludge models from palm oil mill effluent. Bioresour. Technol. 2010, 101, 144-149. [CrossRef] [PubMed] open in new tab
  3. Hauduc, H.; Takacs, I.; Smith, S.; Szabo, A.; Murthy, S.; Daigger, G.T.; Sperandio, M. A dynamic physicochemical model for chemical phosphorus removal. Water Res. 2013, 73, 157-170. [CrossRef] [PubMed] open in new tab
  4. Mannina, G.; Cosenza, A.; Vanrolleghem, P.A.; Viviani, G. A practical protocol for calibration of nutrient removal wastewater treatment models. J. Hydroinform. 2011, 13, 575-595. [CrossRef] open in new tab
  5. Insel, G.; Güder, B.; Güneş, G.; Cokgor, E.U. Are standard wastewater treatment plant design methods suitable for any municipal wastewater? Water Sci. Technol. 2012, 66, 328-335. [CrossRef] [PubMed] open in new tab
  6. Vitanza, R.; Colussi, I.; Cortesi, A.; Gallo, V. Implementing a respirometry-based model into BioWin software to simulate wastewater treatment plant operations. J. Water Process Eng. 2015, 9, 267-275. [CrossRef] open in new tab
  7. Petersen, B.; Gernaey, K.; Henze, M.; Vanrolleghem, P.A. Evaluation of an ASM1 model calibration procedure on a municipal-industrial wastewater treatment plant. J. Hydroinf. 2002, 4, 15-38. [CrossRef] open in new tab
  8. Melcer, H. Methods of Wastewater Characterization in Activated Sludge Modelling; Water Environment Research Foundation, IWA Publishing: London, UK, 2003. open in new tab
  9. Mhlanga, F.T.; Brouckaert, C.J. Characterisation of wastewater for modelling of wastewater treatment plants receiving industrial effluent. Water SA 2013, 39, 403-407. [CrossRef] open in new tab
  10. Orhon, D.; Çokgör, E.U. COD Fractionation in Wastewater Characterization-The State of the Art. J. Chem. Technol. Biotechnol. 1997, 68, 283-293. [CrossRef] open in new tab
  11. Vital-Jacome, M.; Dochain, D.; Thalasso, F. Microrespirometric model calibration applied to wastewater processes. Biochem. Eng. J. 2017, 128, 168-177. [CrossRef] open in new tab
  12. Szaja, A.; Łagód, G.; Jaromin-Glen, K.; Montusiewicz, A. The Effect of Bioaugmentation with Archaea on the Oxygen Uptake Rate in a Sequencing Batch Reactor. Water 2018, 10, 575. [CrossRef] open in new tab
  13. Ekama, G.A.; Marais, G.V.R. Dynamic behavior of the activated sludge process. J. Water Pollut. Control Fed. 1979, 51, 534-556.
  14. Henze, M. Characterization of wastewater for modelling of activated sludge processes. Water Sci. Technol. 1992, 25, 1-15. [CrossRef] open in new tab
  15. Ekama, G.A.; Dold, P.L.; Marais, G.V.R. Procedures for determining influent COD fractions and the maximum specific growth rate of heterotrophs in activated sludge systems. Water Sci. Technol. 1986, 18, 91-114. [CrossRef] open in new tab
  16. Vollertsen, J.; Hvitved-Jacobsen, T. Biodegradability of wastewater-A method for COD-fractionation. Water Sci. Technol. 2002, 45, 25-34. [CrossRef] [PubMed] open in new tab
  17. Szaja, A.; Aguilar, J.A.; Łagód, G. Estimation of chemical oxygen demand fractions of municipal wastewater by respirometric method-Case study. Ann. Set. Environ. Prot. Rocz. Ochr.Środ. 2015, 17, 289-299.
  18. Agathos, S.; Reineke, W. Biotechnology for the Environment: Wastewater Treatment and Modeling, Waste Gas Handling; Springer-Science + Business Media, B.V.: Amsterdam, The Netherland, 2003. open in new tab
  19. Choi, Y.-Y.; Baek, S.-R.; Kim, J.-I.; Choi, J.-W.; Hur, J.; Lee, T.-U.; Park, C.-J.; Lee, B.J. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge. Water 2017, 9, 409. [CrossRef] open in new tab
  20. Drewnowski, J.; Makinia, J. Modeling hydrolysis of slowly biodegradable organic compounds in biological nutrient removal activated sludge systems. Water Sci. Technol. 2013, 67, 2067-2074. [CrossRef] [PubMed] open in new tab
  21. Henze, M.; Grady, C.P.L., Jr.; Gujer, W.; Marais, G.V.R.; Matsuo, T. Activated Sludge Model No. 1. IAWPRC Scientific and Technical Report No. 1; IAWPRC: London, UK, 1987. open in new tab
  22. DWA-A 131-Design of Single-Stage Activated Sludge Systems; GFA Publisher for Wastewater, Waste and Water Protection: Hennef, Germany, 2016. open in new tab
  23. Smolders, G.J.; van der Meij, J.; van Loosdrecht, M.C.; Heijnen, J.J. A structured metabolic model for anaerobic and aerobic stoichiometry and kinetics of the biological phosphorus removal process. Biotechnol. Bioeng. 1995, 47, 277-287. [CrossRef] [PubMed] open in new tab
  24. Tsuneda, S.; Ohno, T.; Soejima, K.; Hirata, A. Simultaneous nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in a sequencing batch reactor. Biochem. Eng. J. 2006, 27, 191-196. [CrossRef] open in new tab
  25. Tränckner, J.; Koegst, T.; Cramer, M.; Gießler, M.; Richter, B.; Müther, F. Phosphorus Removal in WWTP bis 10.000 Population Equivalent in Mecklenburg-Vorpommern; Ministry of Agriculture, the Environmental and Consumer Protection LUNG: Schwerin, Germany, 2016. (In German) open in new tab
  26. Shahzad, M.; Khan, S.H.; Paul, P. Influence of Temperature on the Performance of a Full-Scale Activated Sludge Process Operated at Varying Solids Retention Times Whilst Treating Municipal Sewage. Water 2015, 7, 855-867. [CrossRef] open in new tab
  27. Drewnowski, J. The impact of slowly biodegradable organic compounds on the oxygen uptake rate in activated sludge systems. Water Sci. Technol. 2014, 69, 1136-1144. [CrossRef] [PubMed] open in new tab
  28. Von Sperling, M. Wastewater Characteristics, Treatment and Disposal; IWA Publishing: London, UK, 2007. open in new tab
  29. Hvitved-Jacobsen, T.; Vollertsen, J.; Matos, J.S. The sewer as a bioreactor-A dry weather approach. Water Sci. Technol. 2002, 45, 11-24. [CrossRef] [PubMed] open in new tab
  30. Mąkinia, J. Performance Prediction of Full-Scale Biological Nutrient Removal Systems Using Complex Activated Sludge Models; Veröffentlichungen des Institutes für Siedlungswasserwirtschaft und Abfalltechnik der Universität Hannover: Hannover, Germany, 2006; pp. 1-334.
  31. Nelder, J.A.; Mead, R.A. Simplex Method for Function Minimization. Comput. J. 1965, 7, 308-313. [CrossRef] open in new tab
  32. Dassanayake, C.Y. Use of Oxygen Uptake Rate (OUR) as a Tool to Start Up, Predict Process Instability, Perform Rapid Process Optimization, and Monitor Nitrifier Population Dynamics in Biological Nitrogen Removal (BNR) Systems-Teaching an Old Dog New Tricks. Texas WET 2007, 24, 16-22.
  33. Vaccari, D.A.; Fagedes, T.; Longtin, J. Calculation of mean cell residence time for unsteady-state activated sludge systems. Biotechnol. Bioeng. 1985, 27, 695-703. [CrossRef] [PubMed] open in new tab
  34. Takacs, I. Experiments in Activated Sludge Modelling. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2008.
  35. Garrett, M.T. Hydraulic control of activated sludge growth rate. Sewage Indust. Wastes 1958, 30, 252-261.
  36. Mamais, D.; Jenkins, D.; Prrr, P. A rapid physical-chemical method for the determination of readily biodegradable soluble COD in municipal wastewater. Water Res. 1993, 27, 195-197. [CrossRef] open in new tab
  37. Roeleveld, P.J.; van Loosdrecht, M.C. Experience with guidelines for wastewater characterisation in The Netherlands. Water Sci. Technol. 2002, 45, 77-87. [CrossRef] [PubMed] open in new tab
  38. Ginestet, P.; Maisonnier, A.; Spérandio, M. Wastewater COD characterization: Biodegradability of physico-chemical fractions. Water Sci. Technol. 2002, 45, 89-97. [CrossRef] [PubMed] open in new tab
  39. Naidoo, V.; Urbain, V.; Buckley, C.A. Characterization of wastewater and activated sludge from European municipal wastewater treatment plants using the nur test. Water Sci Technol. 1998, 38, 308-310. [CrossRef] open in new tab
  40. Balbierz, P.; Knap, M. Comparison of methods for solids retention time determination and control. E3S Web Conf. 2017, 22, 00008. [CrossRef] open in new tab
  41. Puig, S.; van Loosdrecht, M.C.M.; Colprim, J.; Meijer, S.C.F. Data evaluation of full-scale wastewater treatment plants by mass balance. Water Res. 2008, 42, 4645-4655. [CrossRef] [PubMed] open in new tab
  42. Brdjanovic, D.; Van Loosdrecht, M.C.M.; Versteeg, P.; Hooijmans, C.M.; Alaerts, G.J.; Heijnen, J.J. Modeling COD, N and P removal in a full-scale WWTP Haarlem Waarderpolder. Water Res. 2000, 34, 846-858. [CrossRef] open in new tab
  43. Meijer, S.C.F.; van Loosdrecht, M.C.M.; Heijnen, J.J. Metabolic modelling of full-scale biological nitrogen and phosphorus removing wwtp's. Water Res. 2001, 35, 2711-2723. [CrossRef] open in new tab
  44. Greenwood, S.; Anderson, C.; Rieth, M.; Stein, T. Constant SRT Calculated from Liquid Flows Improves BNR Activated Sludge Performance; Central States Water Environment Association: Crystal Lake, IL, USA, 2002; Available online: http://www.cswea.org/papers (accessed on 10 December 2017). open in new tab
  45. Van Veldhuizen, H.M.; van Loosdrecht, M.C.M.; Heijnen, J.J. Modelling biological phosphorus and nitrogen removal in a full scale activated sludge process. Water Res. 1999, 33, 3459-3468. [CrossRef] open in new tab
  46. Henze, M.; Gujer, W.; Mino, T.; Matsuo, T.; Wetzel, M.C.; Marais, G.V.R.; van Loosdrecht, M.C.M. Activated Sludge Process Model No. 2d. Water Sci. Technol. 1999, 39, 165-182. [CrossRef] open in new tab
  47. Ramdani, A.; Dold, P.; Déléris, S.; Lamarre, D.; Gadbois, A.; Comeau, Y. Biodegradation of the endogenous residue of activated sludge. Water Res. 2010, 44, 2179-2188. [CrossRef] [PubMed] open in new tab
  48. Friedrich, M. Aspects of Energy Management in Wastewater and Sludge Treatment; Rostocker Abwassertagung-Infrastructure and Energy Management, University of Rostock: Rostock, Germany, 2014. (In German)
  49. Imhoff, K. Handbook of Municipal Drainage; Oldenbourg Industrieverlag: München, Germany, 2007. (In German)
  50. Hvitved-Jacobsen, T.; Vollertsen, J.; Nielsen, P.H. A Process and Model Concept for Microbial Wastewater Transformations in Gravity Sewers. Water Sci. Technol. 1998, 37, 233-241. [CrossRef] open in new tab
  51. Henze, M.; Kristensen, G.H.; Strube, R. Rate-capacity characterization of wastewater for nutrient removal processes. Water Sci. Technol. 1994, 29, 101-107. [CrossRef] open in new tab
  52. Bjerre, H.L.; Hvitved-Jacobsen, T.; Teichgräber, B.; Heesen, D.T. Experimental procedures characterizing transformations of wastewater organic matter in the Emscher River, Germany. Water Sci. Technol. 1995, 31, 201-212. [CrossRef] open in new tab
  53. Tchobanoglous, G.; Stensel, H.D.; Tsuchihashi, R.; Burton, F.L.; Franklin, L.; Abu-Orf, M.; Bowden, G.; Pfrang, W. Wastewater Engineering: Treatment and Resource Recovery;
  54. Metcalf & Eddy, Ed.; McGraw-Hill Education: New York, NY, USA, 2014. open in new tab
  55. Makinia, J. Mathematical Modelling and Computer Simulation of Activated Sludge Systems; IWA Publishing: London, UK; New York, NY, USA, 2010. open in new tab
  56. Ekama, G.A. The role and control of sludge age in biological nutrient removal activated sludge systems. Water Sci. Technol. 2010, 61, 1645-1652. [CrossRef] [PubMed] open in new tab
Verified by:
Gdańsk University of Technology

seen 128 times

Recommended for you

Meta Tags