Comprehensive comparison of compact UWB antenna performance by means of multi-objective optimization - Publication - Bridge of Knowledge

Search

Comprehensive comparison of compact UWB antenna performance by means of multi-objective optimization

Abstract

An optimization-based procedure for comprehensive performance comparison of alternative compact UWB antenna topologies is discussed. The assessment of the antenna performance is conducted with respect to the structure size and its reflection response. More specifically, the best possible tradeoffs between these two figures of merit are identified through multiobjective optimization at the level of full-wave electromagnetic (EM) simulation. Analysis of Pareto-optimal designs obtained for various antenna topologies allow for their fair comparison; particularly in terms of the minimum size, they can be designed for (assuming acceptable reflection response levels) or the best attainable reflection characteristics. For the sake of computational efficiency, the multiobjective optimization algorithm utilized in this paper exploits sequential domain patching technique and variable-fidelity EM simulation models, which is a fully automated procedure that permits finding Pareto set representations at the cost corresponding to about a hundred of high-fidelity EM analyses of a given structure. The proposed approach is demonstrated using three topologies of compact UWB-monopole antennas. Comparison of antenna with respect to three objectives (also including total efficiency) is also discussed. Simulation results are verified using experimental data.

Citations

  • 2 1

    CrossRef

  • 0

    Web of Science

  • 2 3

    Scopus

Cite as

Full text

download paper
downloaded 57 times
Publication version
Accepted or Published Version
License
Copyright (© 2017 IEEE)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION no. 65, pages 3427 - 3436,
ISSN: 0018-926X
Language:
English
Publication year:
2017
Bibliographic description:
Kozieł S., Bekasiewicz A.: Comprehensive comparison of compact UWB antenna performance by means of multi-objective optimization// IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. -Vol. 65, nr. 7 (2017), s.3427-3436
DOI:
Digital Object Identifier (open in new tab) 10.1109/tap.2017.2700044
Bibliography: test
  1. M. Bod, H. R. Hassani, and M. M. S. Taheri, "Compact UWB printed slot antenna with extra bluetooth, GSM, and GPS bands," IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 531-534, 2012. open in new tab
  2. P. B. Samal, P. J. Soh, and G. A. E. Vandenbosch, "UWB all- textile antenna with full ground plane for off-body WBAN commu- nications," IEEE Trans. Antennas Propag., vol. 62, no. 1, pp. 102-108, Jan. 2014. open in new tab
  3. H. R. Khaleel, H. M. Al-Rizzo, D. G. Rucker, and S. Mohan, "A compact polyimide-based UWB antenna for flexible electronics," IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 564-567, 2012. open in new tab
  4. S. Zhang, B. K. Lau, A. Sunesson, and S. He, "Closely-packed UWB MIMO/diversity antenna with different patterns and polarizations for USB dongle applications," IEEE Trans. Antennas Propag., vol. 60, no. 9, pp. 4372-4380, Sep. 2012. open in new tab
  5. H. Ning, Unit and Ubiquitous Internet of Things. Boca Raton, FL, USA: CRC Press, 2013.
  6. L. Lizzi and F. Ferrero, "Use of ultra-narrow band miniature antennas for Internet-of-Things applications," Electron. Lett., vol. 51, no. 24, pp. 1964-1966, 2015. open in new tab
  7. N. Chahat, M. Zhadobov, R. Sauleau, and K. Ito, "A compact UWB antenna for on-body applications," IEEE Trans. Antennas Propag., vol. 59, no. 4, pp. 1123-1131, Apr. 2011. open in new tab
  8. A. Bekasiewicz and S. Koziel, "Structure and design optimisation of compact UWB slot antenna," Electron. Lett., vol. 52, no. 9, pp. 681-682, 2016. open in new tab
  9. C. A. Balanis, Antenna Theory Analysis and Design, 3rd ed. Hoboken, NJ, USA: Wiley, 2005.
  10. S. Koziel and A. Bekasiewicz, "A structure and simulation-driven design of compact CPW-fed UWB antenna," IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 750-753, 2016. open in new tab
  11. L. Liu, S. W. Cheung, and T. I. Yuk, "Compact MIMO antenna for portable devices in UWB applications," IEEE Trans. Antennas Propag., vol. 61, no. 8, pp. 4257-4264, Aug. 2013. open in new tab
  12. A. Bekasiewicz and S. Koziel, "Structure and computationally efficient simulation-driven design of compact UWB monopole antenna," IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1282-1285, 2015. open in new tab
  13. J.-F. Li, Q.-X. Chu, Z.-H. Li, and X.-X. Xia, "Compact dual band- notched UWB MIMO antenna with high isolation," IEEE Trans. Anten- nas Propag., vol. 61, no. 9, pp. 4759-4766, Sep. 2013. open in new tab
  14. Y.-F. Liu, P. Wang, and H. Qin, "Compact ACS-fed UWB monopole antenna with extra Bluetooth band," Electron. Lett., vol. 50, no. 18, pp. 1263-1264, 2014. open in new tab
  15. T. K. Roshna, U. Deepak, V. R. Sajitha, and P. Mohanan, "Coplanar stripline-fed compact UWB antenna," Electron. Lett., vol. 50, no. 17, pp. 1181-1182, Aug. 2014. open in new tab
  16. L. Guo, S. Wang, X. Chen, and C. G. Parini, "Study of compact antenna for UWB applications," Electron. Lett., vol. 46, no. 2, pp. 115-116, 2010. open in new tab
  17. L. Guo, S. Wang, X. Chen, and C. Parini, "A small printed quasi- self-complementary antenna for ultrawideband systems," IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 554-557, 2009.
  18. C.-Y. Huang and J.-Y. Su, "A printed band-notched UWB antenna using quasi-self-complementary structure," IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 1151-1153, 2011.
  19. W.-T. Chung, and C.-H. Lee, "Compact slot antenna for UWB applica- tions," IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 63-66, 2010.
  20. M. Gopikrishna, D. D. Krishna, C. K. Aanandan, P. Mohanan, and K. Vasudevan, "Design of a microstip fed step slot antenna for UWB communication," Microw. Opt. Technol. Lett., vol. 51, no. 4, pp. 1126-1129, 2009. open in new tab
  21. J. Nocedal and S. Wright, Numerical Optimization, 2nd ed. New York, NY, USA: Springer, 2006. open in new tab
  22. A. R. Conn, K. Scheinberg, and L. N. Vincente, Introduction to Derivative-Free Optimization. Philadelphia, PA, USA: SIAM, 2009. open in new tab
  23. S. Koziel and S. Ogurtsov, Antenna Design by Simulation-Driven Opti- mization. Surrogate-Based Approach. New York, NY, USA: Springer, 2014. open in new tab
  24. S. Koziel, X. S. Yang, and Q. J. Zhang, Eds., Simulation-Driven Design Optimization and Modeling for Microwave Engineering. London, U.K.: Imperial College Press, 2013. open in new tab
  25. M. B. Yelten, T. Zhu, S. Koziel, P. D. Franzon, and M. B. Steer, "Demystifying surrogate modeling for circuits and systems," IEEE Circuits Syst. Mag., vol. 12, no. 1, pp. 45-63, 1st Quart., 2012. open in new tab
  26. S. Koziel and J. W. Bandler, "Rapid yield estimation and optimization of microwave structures exploiting feature-based statistical analysis," IEEE Trans. Microw. Theory Techn., vol. 63, no. 1, pp. 107-114, Jan. 2015. open in new tab
  27. M. A. E. Sabbagh, M. H. Bakr, and J. W. Bandler, "Adjoint higher order sensitivities for fast full-wave optimization of microwave filters," IEEE Trans. Microw. Theory Techn., vol. 54, no. 8, pp. 3339-3351, Aug. 2006. open in new tab
  28. M. Ghassemi, M. Bakr, and N. Sangary, "Antenna design exploiting adjoint sensitivity-based geometry evolution," IET Microw. Antennas Propag., vol. 7, no. 4, pp. 268-276, 2013. open in new tab
  29. S. Koziel and A. Bekasiewicz, "Fast EM-driven size reduction of antenna structures by means of adjoint sensitivities and trust regions," IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1681-1684, 2015. open in new tab
  30. T. Li, H. Zhai, G. Li, L. Li, and C. Liang, "Compact UWB band-notched antenna design using interdigital capacitance loading loop resonator," IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 724-727, 2012.
  31. X. Qing and Z. N. Chen, "Compact coplanar waveguide-fed ultra- wideband monopole-like slot antenna," IET Microw. Antennas Propag., vol. 3, no. 5, pp. 889-898, 2009. open in new tab
  32. S. Koziel and A. Bekasiewicz, "Multiobjective antenna design by means of sequential domain patching," IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 1089-1092, 2015. open in new tab
  33. H. Choo, R. L. Rogers, and H. Ling, "Design of electrically small wire antennas using a Pareto genetic algorithm," IEEE Trans. Antennas Propag., vol. 53, no. 3, pp. 1038-1046, Mar. 2005.
  34. S. Koulouridis, D. Psychoudakis, and J. L. Volakis, "Multiobjective optimal antenna design based on volumetric material optimization," IEEE Trans. Antennas Propag., vol. 55, no. 3, pp. 594-603, Mar. 2007. open in new tab
  35. K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. New York, NY, USA: Wiley, 2001. open in new tab
  36. S. Chamaani, M. S. Abrishamian, and S. A. Mirtaheri, "Time-domain design of UWB Vivaldi antenna array using multiobjective particle swarm optimization," IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 666-669, 2010. open in new tab
  37. Y. Kuwahara, "Multiobjective optimization design of Yagi-Uda antenna," IEEE Trans. Antennas Propag., vol. 53, no. 6, pp. 1984-1992, Jun. 2005. open in new tab
  38. C.-C. Lin, S.-W. Kuo, and H.-R. Chuang, "A 2.4-GHz printed meander- line antenna for USB WLAN with notebook-PC housing," IEEE Microw. Wireless Compon. Lett., vol. 15, no. 9, pp. 546-548, Sep. 2005. open in new tab
  39. S. Koziel and S. Ogurtsov, "Multi-objective design of antennas using variable-fidelity simulations and surrogate models," IEEE Trans. Antennas Propag., vol. 61, no. 12, pp. 5931-5939, Dec. 2013. open in new tab
  40. S. Koziel and A. Bekasiewicz, "Rapid multiobjective antenna design using point-by-point Pareto set identification and local surrogate mod- els," IEEE Trans. Antennas Propag., vol. 64, no. 6, pp. 2551-2556, Jun. 2016. open in new tab
  41. S. Koziel, "Computationally efficient multi-fidelity multi-grid design optimization of microwave structures," Appl. Comput. Electromagn. Soc. J., vol. 25, no. 7, pp. 578-586, 2010.
  42. A. I. J. Forrester and A. J. Keane, "Recent advances in surrogate-based optimization," Prog. Aerosp. Sci., vol. 45, pp. 50-79, Jan./Apr. 2009. open in new tab
  43. S. Koziel, A. Bekasiewicz, and W. Zieniutycz, "Expedited EM-driven multiobjective antenna design in highly dimensional parameter spaces," IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 631-634, 2014. open in new tab
  44. S. Koziel and A. Bekasiewicz, "Low-cost multi-objective optimization of antennas using Pareto front exploration and response features," in Proc. IEEE Int. Symp. Antennas Propag., Fajardo, Puerto Rico, Jun. 2016, pp. 571-572. open in new tab
  45. CST Microwave Studio, CST AG, Darmstadt, Germany, 2015. [Online]. Available: http://www.cst.com open in new tab
  46. A. Bekasiewicz, S. Koziel, W. Zieniutycz, and L. Leifsson, "Expedited simulation-driven multi-objective design optimization of quasi-isotropic dielectric resonator antenna," in Simulation-Driven Modeling and Opti- mization. New York, NY, USA: Springer, 2016, pp. 207-231. open in new tab
Verified by:
Gdańsk University of Technology

seen 105 times

Recommended for you

Meta Tags