Computationally efficient two-objective optimization of compact microwave couplers through corrected domain patching - Publication - Bridge of Knowledge

Search

Computationally efficient two-objective optimization of compact microwave couplers through corrected domain patching

Abstract

Finding an acceptable compromise between various objectives is a necessity in the design of contemporary microwave components and circuits. A primary reason is that most objectives are at least partially conflicting. For compact microwave structures, the design trade-offs are normally related to the circuit size and its electrical performance. In order to obtain comprehensive information about the best possible trade-offs, multi-objective optimization is necessary that leads to identifying a Pareto set. Here, a framework for fast multi-objective design of compact micro-strip couplers is discussed. We use a sequential domain patching (SDP) algorithm for numerically efficient handling of the structure bandwidth and the footprint area. Low cost of the process is ensured by executing SDP at the low-fidelity model level. Due to its bi-objective implementation, SDP cannot control the power split error of the coupler, the value of which may become unacceptably high along the initial Pareto set. Here, we propose a procedure for correction of the S-parameters’ characteristics of Pareto designs. The method exploits gradients of power split and bandwidth estimated using finite differentiation at the patch centres. The gradient data are used to correct the power split ratio while leaving the operational bandwidth of the structure at hand intact. The correction does not affect the computational cost of the design process because perturbations are pre-generated by SDP. The final Pareto set is obtained upon refining the corrected designs to the high-fidelity EM model level. The proposed technique is demonstrated using two compact microstrip rat-race couplers. Experimental validation is also provided.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 3

    Scopus

Cite as

Full text

download paper
downloaded 24 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Metrology and Measurement Systems no. 25, pages 139 - 157,
ISSN: 0860-8229
Language:
English
Publication year:
2018
Bibliographic description:
Kozieł S., Bekasiewicz A.: Computationally efficient two-objective optimization of compact microwave couplers through corrected domain patching// Metrology and Measurement Systems. -Vol. 25, nr. 1 (2018), s.139-157
DOI:
Digital Object Identifier (open in new tab) 10.24425/118166
Bibliography: test
  1. Kurgan, P., Filipcewicz, J., Kitlinski, M. (2012). Development of a compact microstrip resonant cell aimed at efficient microwave component size reduction. IET Microwaves, Ant. Prop., 6(12), 1291- 1298. open in new tab
  2. Tseng, C.H., Chang, C.L. (2012). A rigorous design methodology for compact planar branch-line and rat-race couplers with asymmetrical T-structures. IEEE Trans. Microwave Theory Tech., 60(7), 2085-2092. open in new tab
  3. Salari, M.A., Manoochehri, O., Abbasiniazare, S. (2013). Miniaturized microstrip ring hybrid with defected microstrip structure. Microw. Opt. Tech. Lett., 55(10), 2245-2248. open in new tab
  4. Guo, L., Wang, S., Chen, X., Parini, C.G. (2010). Study of compact antenna for UWB applications. Electronics Lett., 46(2), 115-116. open in new tab
  5. Gautam, A.K., Yadav, S., Kanaujia, B.K. (2013). A CPW-fed compact UWB microstrip antenna. IEEE Ant. Wireless Prop. Lett., 12, 151-154. open in new tab
  6. Xiao, S., Wang, B.Z., Shao, W., Zhang, Y. (2005). Bandwidth-enhancing ultralow-profile compact patch antenna. IEEE Trans. Ant. Prop., 53(11), 3443-3447.
  7. Ahn, H.R., Bumman, K. (2008). Toward integrated circuit size reduction. IEEE Microw. Mag., 9(1), 65-75.
  8. Sani, A., Alomainy, A., Palikaras, G., Nechayev, Y., Yang. H., Parini, C., Hall, P.S. (2010). Experi- mental characterization of UWB on-body radio channel in indoor environment considering different antennas. IEEE Trans. Ant. Prop., 58(1), 238-241. open in new tab
  9. Ning, H. (2013). Unit and ubiquitous internet of things. CRC Press. open in new tab
  10. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M. (2015). Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347-2376. open in new tab
  11. Koziel, S., Bekasiewicz, A., Kurgan, P. (2015). Rapid multi-objective simulation-driven design of compact microwave circuits. IEEE Microwave Wireless Comp. Letters, 25(5), 277-279. open in new tab
  12. Koziel, S., Bekasiewicz, A., Kurgan, P., Bandler, J.W. (2015). Rapid multi-objective design optimiza- tion of compact microwave couplers by means of physics-based surrogates. IET Microwaves, Ant. Prop., 10(5), 479-486. open in new tab
  13. Liao, S.S., Sun, P.T., Chin, N.C., Peng, J.T. (2005). A novel compact-size branch-line coupler. IEEE Microw. Wireless Comp. Lett., 15(9), 588-590.
  14. Xu, H.X., Wang, G.M., Lu, K. (2011). Microstrip rat-race couplers. IEEE Microw. Mag., 12(4), 117- 129. open in new tab
  15. Jung, C., Negra, R., Ghannouchi, F.M. (2008). A design methodology for miniaturized 3-dB branch- line hybrid couplers using distributed capacitors printed in the inner area. IEEE Trans. Microw. Theory Techn., 56(12), 2950-2953.
  16. Kurgan, P., Kitlinski, M. (2011). Doubly miniaturized rat-race hybrid coupler. Microwave Opt. Tech. Lett., 53(6), 1242-1244. open in new tab
  17. Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, H.M., Madsen, K., Søndergaard, J. (2004). Space mapping: the state of the art. IEEE Trans. Microwave Theory Tech., 52(1), 337-361. open in new tab
  18. Koziel, S., Ogurtsov, S. (2014). Antenna design by simulation-driven optimization. Surrogate-based approach. Springer. open in new tab
  19. Koziel, S., Yang, X.S., Zhang, Q.J. (eds.), (2013). Simulation-driven design optimization and modeling for microwave engineering. Imperial College Press. open in new tab
  20. El Sabbagh, M.A., Bakr, M.H., Bandler, J.W. (2006). Adjoint higher order sensitivities for fast full- wave optimization of microwave filters. IEEE Trans. Microw Theory Tech., 54, 3339-3351. open in new tab
  21. Bakr, M.H., Nikolova, N.K. (2004). An adjoint variable method for time-domain transmission-line modeling with fixed structured grids. IEEE Trans. Microwave Theory Tech., 52(2), 554-559. open in new tab
  22. Khalatpour, A., Amineh, R.K., Cheng, Q.S., Bakr, M.H., Nikolova, N.K., Bandler, J.W. (2011). Accel- erating space mapping optimization with adjoint sensitivities. IEEE Microwave Wireless Comp. Lett., 21(6), 280-282. open in new tab
  23. Bekasiewicz, A., Koziel, S. (2015). Efficient multi-fidelity design optimization of microwave filters using adjoint sensitivity. Int. J. RF Microwave CAE, 25(2), 178-183. open in new tab
  24. Yeung, S.H., Man, K.F. (2011). Multiobjective optimization. IEEE Microw. Mag., 12(6), 120-133. open in new tab
  25. Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. NY: Wiley. open in new tab
  26. Kuwahara, Y. (2005). Multiobjective Optimization Design of Yagi-Uda Antenna. IEEE Trans. Ant. Prop., 53(6), 1984-1992. open in new tab
  27. Chamaani, S., Abrishamian, M.S., Mirtaheri, S.A. (2010). Time-domain design of UWB Vivaldi an- tenna array using multiobjective particle swarm optimization. IEEE Ant. Wireless Prop. Lett., 9, 666- 669. open in new tab
  28. Jin, N., Rahmat-Samii, Y. (2007). Advances in particle swarm optimization for antenna designs: real- number, binary, single-objective and multiobjective implementations. IEEE Trans. Ant. Prop., 55(3), 556-567. open in new tab
  29. Goudos, S.K., Zaharis, Z.D., Kampitaki, D.G., et.al. (2009). Pareto optimal design of dual-band base station antenna arrays using multi-objective particle swarm optimization with fitness sharing. IEEE Trans. on Magn., 45, 1522-1525. open in new tab
  30. Koziel, S., Bekasiewicz, A., Kurgan, P. (2015). Rapid multi-objective simulation-driven design of compact microwave circuits. IEEE Microwave Wireless Comp. Lett., 25(5), 277-279. open in new tab
  31. Koziel, S., Bekasiewicz, A., Zieniutycz, W. (2014). Expedited EM-driven multi-objective antenna design in highly-dimensional parameter spaces. IEEE Ant. Wireless Prop. Lett., 13, 631-634. open in new tab
  32. Koziel, S., Bekasiewicz, A. (2015). Fast multiobjective optimization of narrow-band antennas using RSA models and design space reduction. IEEE Ant. Wireless Prop. Lett., 14, 450-453. open in new tab
  33. Koziel, S., Ogurtsov, S. (2013). Multi-objective design of antennas using variable-fidelity simulations and surrogate models. IEEE Trans. Ant. Prop., 61(12), 5931-5939. open in new tab
  34. Koziel, S., Bekasiewicz, A. (2016). Multi-objective antenna design by means of sequential domain patching. IEEE Ant. Wireless Prop. Lett., 15, 1089-1092. open in new tab
  35. Bekasiewicz, A., Koziel, S., Pankiewicz, B. (2015). Accelerated simulation-driven design optimisation of compact couplers by means of two-level space mapping. IET Microwaves, Ant. Prop., 9(7), 618- 626. open in new tab
  36. CST Microwave Studio, ver. 2015, CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany, 2015. open in new tab
  37. Tseng, C.H., Chen, H.J. (2008). Compact rat-race coupler using shunt-stub-based artificial transmis- sion lines. IEEE Microw. Wireless Comp. Lett., 18(11), 734-736. open in new tab
  38. Kotinis, M. (2010). A particle swarm optimizer for constrained multi-objective engineering design problems. Eng. Optimization, 42(10), 907-926. open in new tab
  39. Al-Baity, H., Meshoul, S., Kaban, A. (2012). Constrained multi-objective optimization using a quan- tum behaved particle swarm. Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.). Int. Conf. Neural Infor- mation Processing, 456-464. open in new tab
  40. Feliot, P., Bect, J., Vazquez, E. (2017). A Bayesian approach to constrained single-and multi-objective optimization. J. Global Opt., 67(1), 1-37. open in new tab
  41. Martinez-Frutos, J., Herrero-Perez, D. (2016). Kriging-based infill sampling criterion for constraint handling in multi-objective optimization. J. Global Opt., 64(1), 97-115. open in new tab
  42. Hussein, R., Deb, K. (2016). A generative kriging surrogate model for constrained and unconstrained multi-objective optimization. Proc. Genetic Evolutionary Comp. Conf., 573-580. open in new tab
  43. Bekasiewicz, A., Koziel, S., Leifsson, L. (2016). Sequential domain patching for computationally fea- sible multi-objective optimization of expensive electromagnetic simulation models. Procedia Comp. Sci., 80, 1093-1102. open in new tab
  44. Koziel, S., Bekasiewicz, A. (2016). Multi-objective optimization microwave couplers using corrected domain patching. European Microwave Conference, 1-4, London. open in new tab
Verified by:
Gdańsk University of Technology

seen 82 times

Recommended for you

Meta Tags