Controlling crystallites orientation and facet exposure for enhanced electrochemical properties of polycrystalline MoO3 films - Publication - Bridge of Knowledge

Search

Controlling crystallites orientation and facet exposure for enhanced electrochemical properties of polycrystalline MoO3 films

Abstract

This study focuses on the development and optimization of MoO3 films on commercially available FTO substrates using the pulsed laser deposition (PLD) technique. By carefully selecting deposition conditions and implementing post-treatment procedures, precise control over crystallite orientation relative to the substrate is achieved. Deposition at 450 °C in O2 atmosphere results in random crystallite arrangement, while introducing argon instead of oxygen to the PLD chamber during the initial stage of sputtering exposes the (102) and (011) facets. On the other hand, room temperature deposition leads to the formation of amorphous film, but after appropriate post-annealing treatment, the (00k) facets were exposed. The deposited films are studied using SEM and XRD techniques. Moreover, electrochemical properties of FTO/MoO3 electrodes immersed in 1 M AlCl3 aqueous solution are evaluated using cyclic voltammetry and electrochemical impedance spectroscopy. The results demonstrate that different electrochemical processes are promoted based on the orientation of crystallites. When the (102) and (011) facets are exposed, the Al3+ ions intercalation induced by polarization is facilitated, while the (00k) planes exposure leads to the diminished hydrogen evolution reaction overpotential.

Citations

  • 6

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Scientific Reports no. 13,
ISSN: 2045-2322
Language:
English
Publication year:
2023
Bibliographic description:
Trzciński K., Zarach Z., Szkoda M., Nowak A., Berent K., Sawczak M.: Controlling crystallites orientation and facet exposure for enhanced electrochemical properties of polycrystalline MoO3 films// Scientific Reports -Vol. 13, (2023), s.16668-
DOI:
Digital Object Identifier (open in new tab) 10.1038/s41598-023-43800-9
Sources of funding:
  • IDUB
Verified by:
Gdańsk University of Technology

seen 110 times

Recommended for you

Meta Tags