Coupling transformation of carbon, nitrogen and sulfur in a long-term operated full-scale constructed wetland - Publication - Bridge of Knowledge

Search

Coupling transformation of carbon, nitrogen and sulfur in a long-term operated full-scale constructed wetland

Abstract

The coupling transformation of carbon, nitrogen and sulfur compounds has been studied in lab-scale and pilot-scale constructed wetlands (CWs), but few studies investigated full-scale CW. In this study, we used batch experiments to investigate the potentials of carbon, nitrogen and sulfur transformation in a long-term operated, full-scale horizontal subsurface flow wetland. The sediments collected from the HSFW were incubated for 48h in the laboratory with supplying various dosages of carbon, nitrogen and sulfur compounds. The results showed that heterotrophic denitrification was the main pathway. At the same time, the sulfide(S2-)-based autotrophic denitrification was also present. Increasing TOC concentration or NO3- concentration could promote heterotrophic denitrification but did not inhibit the sulfide-based autotrophic denitrification. In our experiment, the highest NO3- removal via autotrophic denitrification was 25.23% while that via heterotrophic denitrification was 73.66%, leading to the total NO3- removal of 98.89%. The results also demonstrated that NO3- rather than NO2- was the preferable electron acceptor for both heterotrophic and sulfide-based autotrophic denitrification in the CW. Increasing S2- concentrations promote NO3- removal from 12.99% to 25.23% without organic carbon, but varying NO3- or NO2- has no effects. These results indicated that concentrations of S2-, instead of NO3- or NO2-, was the limiting factor for sulfide-based autotrophic denitrification in the studied CW. The microbial community analysis and correlation analysis between the transformation of carbon, nitrogen and sulfur compounds and relative abundance of bacteria further confirmed that in the CW, the key pathways coupling transformation were heterotrophic denitrification and sulfide-based autotrophic denitrification. Overall, the current study will enhance understanding of carbon, nitrogen, and sulfur transformation in CW and support better design and treatment efficiency.

Citations

  • 1 1

    CrossRef

  • 0

    Web of Science

  • 1 2

    Scopus

Authors (4)

Cite as

Full text

download paper
downloaded 27 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
SCIENCE OF THE TOTAL ENVIRONMENT no. 777,
ISSN: 0048-9697
Language:
English
Publication year:
2021
Bibliographic description:
Mąkinia J., Liu W., Rahaman M., Zhai J.: Coupling transformation of carbon, nitrogen and sulfur in a long-term operated full-scale constructed wetland// SCIENCE OF THE TOTAL ENVIRONMENT -Vol. 777, (2021), s.146016-
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.scitotenv.2021.146016
Verified by:
Gdańsk University of Technology

seen 113 times

Recommended for you

Meta Tags