Discrete identification of continuous non-linear and non-stationary dynamical systems that is insensitive to noise correlation and measurement outliers - Publication - Bridge of Knowledge

Search

Discrete identification of continuous non-linear and non-stationary dynamical systems that is insensitive to noise correlation and measurement outliers

Abstract

The paper uses specific parameter estimation methods to identify the coefficients of continuous-time models represented by linear and non-linear ordinary differential equations. The necessary approximation of such systems in discrete time in the form of utility models is achieved by the use of properly tuned `integrating filters' of the FIR type. The resulting discrete-time descriptions retain the original continuous parameterization and can be identified, for example, by the classical least squares procedure. Since in the presence of correlated noise, the estimated parameter values are burdened with an unavoidable systematic error (manifested by asymptotic bias of the estimates), in order to significantly improve the identification consistency, the method of instrumental variables is used here. In our research we use an estimation algorithm based on the LA criterion of the least sum of absolute values, which is optimal in identifying linear and non-linear systems in the case of sporadic measurement errors. In the paper, we propose a procedure for determining the instrumental variable for a continuous model with non-linearity (related to the Wienerian system) in order to remove the evaluation bias, and a recursive sub-optimal version of the LA estmator. This algorithm is given in a simple (LA) version and in an instrumental variable version (IV-LA), which is robust to outliers, removes evaluation bias, and is suited to the task of identifying processes with non-linear dynamics (semi-Wienerian/NLID). In conclusion, the effectiveness of the proposed algorithmic solutions has been demonstrated by numerical simulations of the mechanical system, which is an essential part of the suspension system of a wheeled vehicle.

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 2

    Scopus

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Archives of Control Sciences no. 33, pages 391 - 411,
ISSN: 1230-2384
Language:
English
Publication year:
2023
Bibliographic description:
Kozłowski J., Kowalczuk Z.: Discrete identification of continuous non-linear and non-stationary dynamical systems that is insensitive to noise correlation and measurement outliers// Archives of Control Sciences -Vol. 33,iss. 2 (2023), s.391-411
DOI:
Digital Object Identifier (open in new tab) 10.24425/acs.2023.146281
Sources of funding:
  • Free publication
Verified by:
Gdańsk University of Technology

seen 98 times

Recommended for you

Meta Tags