Distortional buckling of composite thin-walled columns of a box-type cross section with diaphragms - Publication - MOST Wiedzy


Distortional buckling of composite thin-walled columns of a box-type cross section with diaphragms


Distortional buckling of axially compressed columns of box-like composite cross sections with andwithout internal diaphragms is investigated in the framework of one-dimensional theory. The channel membersare composed of unidirectional fibre-reinforced laminate. Two approaches to the member orthotropic materialare applied: homogenization based on the theory of mixture and periodicity cells, and homogenization basedon the Voigt–Reuss hypothesis. The principle of stationary total potential energy is applied to derive thegoverning differential equation. The obtained buckling stress is valid in the linear elastic range of columnmaterial behaviour. Numerical examples address simply supported columns, and analytical critical stressformulas are derived. The analytical and FEM solutions are compared, and sufficient accuracy of the resultsis observed.


  • 2


  • 1

    Web of Science

  • 0


Full text

download paper
downloaded 5 times


artykuł w czasopiśmie wyróżnionym w JCR
Published in:
ACTA MECHANICA no. 230, pages 3945 - 3961,
ISSN: 0001-5970
Publication year:
Bibliographic description:
Szymczak C., Kujawa M.: Distortional buckling of composite thin-walled columns of a box-type cross section with diaphragms// ACTA MECHANICA. -Vol. 230, (2019), s.3945-3961
Digital Object Identifier (open in new tab) 10.1007/s00707-019-02406-x
Bibliography: test
  1. Abambres, M., Camotim, D., Silvestre, N.: GBT-based elastic-plastic post-buckling analysis of stainless steel thin-walled members. Thin Walled Struct. 83, 85-102 (2014) open in new tab
  2. Abambres, M., Camotim, D., Silvestre, N., Rasmussen, K.: GBT-based structural analysis of elastic-plastic thin-walled members. Comput. Struct. 136, 1-23 (2014) open in new tab
  3. Ádány, S., Silvestre, N., Schafer, B., Camotim, D.: GBT and cFSM: two modal approaches to the buckling analysis of unbranched thin-walled members. Adv. Steel Constr. 5(2), 195-223 (2009) open in new tab
  4. Berthelot, J.: Composite Materials-Mechanical Behaviour and Structural Analysis. Springer, Berlin (1999) open in new tab
  5. Camotim, D., Basaglia, C., Silvestre, N.: GBT buckling analysis of thin-walled steel frames: a state-of-the-art report. Thin Walled Struct. 48, 726-743 (2010) open in new tab
  6. Cheung, Y.: Finite Strip Method in Structural Analysis. Elsevier, Amsterdam (1976) open in new tab
  7. Cheung, Y., Tham, L.: Finite Strip Method. CRC Press, Boca Raton (1998) open in new tab
  8. Chudzikiewicz, A.: Stability loss due to the deformation of the cross-section. Eng. Trans. 7(1), 45-61 (1960) open in new tab
  9. Daniel, I., Ishai, O.: Engineering Mechanics of Composite Materials. Oxford University Press, Oxford (2006)
  10. Davies, J.: Recent research advances in cold-formed steel structures. J. Constr. Steel Res. 55, 267-288 (2000) open in new tab
  11. Dinis, P., Camotim, D., Silvestre, N.: GBT formulation to analyse the buckling behaviour of thin-walled members with arbitrarily 'branched' open cross-sections. Thin Walled Struct. 44, 20-38 (2006) open in new tab
  12. Dow, N., Rosen, B.: Evaluation of Filament-reinforced Composites for Aerospace Structural Applications. NASA Contractor Report. General Electric Company, Philadelphia (1965) open in new tab
  13. Eliseev, V., Vetyukov, Y.: Finite deformation of thin-walled shells in the context of analytical mechanics of material surfaces. Acta Mech. 209(1-2), 43-57 (2010) open in new tab
  14. Gonçalves, R., Camotim, D.: GBT deformation modes for curved thin-walled cross-sections based on a mid-line polygonal approximation. Thin Walled Struct. 103, 231-243 (2016) open in new tab
  15. Habbit, D., Karlsson, B., Sorensen, P.: ABAQUS Analysis User's Manual. Hibbit, Karlsson, Sorensen Inc, Providence (2007)
  16. Hancock, G., Pham, C.: Buckling analysis of thin-walled sections under localised loading using the semi-analytical finite strip method. Thin Walled Struct. 86, 35-46 (2015) open in new tab
  17. Jones, R.: Mechanics of Composites Materials. Taylor & Francis, Abingdon (1999)
  18. Kaw, A.: Mechanics of Composite Materials. Taylor & Francis, Abingdon (2006) open in new tab
  19. Kelly, A. (ed.): Concise Encyclopaedia of Composite Materials. Pergamon Press, Oxford (1989)
  20. Kollar, L., Springer, G.: Mechanics of Composite Structures. Cambridge University Press, Cambridge (2003) open in new tab
  21. Królak, M., Mania, R. (eds.): Stability of Thin-Walled Plate Structures. Technical University of Łódź, Łódź (2011) open in new tab
  22. Kujawa, M., Szymczak, C.: Elastic distortional buckling of thin-walled bars of closed quadratic cross-section. Mech. Mech. Eng. 17(2), 119-126 (2013)
  23. Li, Z., Abreu, J., Leng, J., Schafer, B.: Review: constrained finite strip method developments and applications in cold-formed steel design. Thin Walled Struct. 81, 2-18 (2014) open in new tab
  24. de Miranda, S., Gutiérrez, A., Miletta, R., Ubertini, F.: A generalized beam theory with shear deformation. Thin-Walled Struct. 67, 88-100 (2013) open in new tab
  25. Philips, L.: Design with Advanced Composite Materials. Springer, Berlin (1989) open in new tab
  26. Pietraszkiewicz, W., Górski, J. (eds.): Shell Structures: Theory and Applications, vol. 3. CRC Press, Boca Raton (2014) open in new tab
  27. Pietraszkiewicz, W., Kreja, I. (eds.): Shell Structures: Theory and Applications, vol. 2. CRC Press, Boca Raton (2010) open in new tab
  28. Pietraszkiewicz, W., Szymczak, C. (eds.): Shell Structures: Theory and Applications, vol. 1. Taylor & Francis, Abingdon (2005) open in new tab
  29. Pietraszkiewicz, W., Witkowski, W. (eds.): Shell Structures: Theory and Applications, vol. 4. CRC Press, Boca Raton (2018) open in new tab
  30. Schardt, R.: Generalized beam theory-an adequate method for coupled stability problems. Thin Walled Struct. 19, 161-180 (1994) open in new tab
  31. Silvestre, N., Camotim, D.: Second-order generalised beam theory for arbitrary orthotropic materials. Thin Walled Struct. 40, 791-820 (2002) open in new tab
  32. Szymczak, C., Kujawa, M.: Distortional buckling of thin-walled columns of closed quadratic cross-section. Thin Walled Struct. 113, 111-121 (2017) open in new tab
  33. Szymczak, C., Kujawa, M.: Local buckling of composite channel columns. Contin. Mech. Thermodyn. (2018). https://doi. org/10.1007/s00,161-018-0674-2 open in new tab
  34. Thompson, J., Hunt, G.: A General Theory of Elastic Stability. Wiley, Hoboken (1973)
  35. Timoshenko, S., Gere, J.: Theory of Elastic Stability. McGraw-Hill, International Book Company, New York (1961) open in new tab
  36. Vasiliev, V., Morozov, E.: Mechanics and Analysis of Composites Materials. Elsevier, Amsterdam (2001) open in new tab
  37. Vetyukov, Y.: Direct approach to elastic deformations and stability of thin-walled rods of open profile. Acta Mech. 200, 167-176 (2008) open in new tab
  38. Vetyukov, Y.: Nonlinear Mechanics of Thin-Walled Structures. Springer, Berlin (2014) open in new tab
  39. Waszczyszyn, Z. (ed.): Modern Methods of Stability Analysis of Structures. Ossolineum, Wrocław (1981) open in new tab
  40. Waszczyszyn, Z. (ed.): Selected Problems of Stability of Structures. Ossolineum, Wrocław (1987) open in new tab
  41. Zienkiewicz, O., Taylor, R.: The Finite Element Method, 7th edn. Elsevier, Amsterdam (2013) open in new tab
Verified by:
Gdańsk University of Technology

seen 29 times

Recommended for you

Meta Tags