Abstract
Being researchers, it is an utmost responsibility to provide insight on social issues thus, this work addresses the dynamic modeling of first and most contagious disease named as COVID-19 caused by coronavirus. The first case of COVID-19 appeared in Pakistan was on 26th February 2020 and in Malaysia on 27th February 2020; both patients had foreign travel history. In the paper, the number of total affected cases and total deaths in both countries, are quite the same up till 12th April 2020 but the frequency of new cases per day and recovery rate are different from one another. The movement control approach had also been imposed on 18th March 2020 by both countries. Keeping these facts and figures, the paper proposes a mathematical model based on Lotka-Volterra equations and provides numerical solution of differential equations using the suspectable, exposed, infected, and recovered people data to estimate future consequences and address the difference in the growth rate of COVID-19 patients before and after locked down to reduce the spread further by taking pro-active approaches i.e., social distancing and being quarantined for the essential time frame.
Citations
Author (1)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Magazine publication
- Type:
- Magazine publication
- Title of issue:
- IEEE Xplore strony 156 - 161
- Publication year:
- 2021
- Bibliographic description:
- G. E. Mustafa Abro, S. A. Zulkifli, V. S. Asirvadam, N. Mathur, R. Kumar and V. K. Oad, "Dynamic Modeling of COVID-19 Disease with Impact of Lockdown in Pakistan & Malaysia," 2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), 2021, pp. 156-161.
- DOI:
- Digital Object Identifier (open in new tab) https://doi.org/10.1109/icsipa52582.2021.9576795
- Verified by:
- No verification
seen 131 times