Escherichia coli K-12 suppressor-free mutants lacking early glycosyltransferases and late acyltransferases. Minimal lipopolysaccharide structure and induction of envelope stress response. - Publication - Bridge of Knowledge

Search

Escherichia coli K-12 suppressor-free mutants lacking early glycosyltransferases and late acyltransferases. Minimal lipopolysaccharide structure and induction of envelope stress response.

Abstract

To elucidate the minimal lipopolysaccharide (LPS) structure needed for the viability of Escherichia coli, suppressor-free strains lacking either the 3-deoxy-d-manno-oct-2-ulosonic acid transferase waaA gene or derivatives of the heptosyltransferase I waaC deletion with lack of one or all late acyltransferases (lpxL/M/P) and/or various outer membrane biogenesis factors were constructed. Δ(waaC lpxL lpxM lpxP) and waaA mutants exhibited highly attenuated growth, whereas simultaneous deletion of waaC and surA was lethal. Analyses of LPS of suppressor-free waaA mutants grown at 21 °C, besides showing accumulation of free lipid IVA precursor, also revealed the presence of its pentaacylated and hexaacylated derivatives, indicating in vivo late acylation can occur without Kdo. In contrast, LPS of Δ(waaC lpxL lpxM lpxP) strains showed primarily Kdo2-lipid IVA, indicating that these minimal LPS structures are sufficient to support growth of E. coli under slow-growth conditions at 21/23 °C. These lipid IVA derivatives could be modified biosynthetically by phosphoethanolamine, but not by 4-amino-4-deoxy-l-arabinose, indicating export defects of such minimal LPS. ΔwaaA and Δ(waaC lpxL lpxM lpxP) exhibited cell-division defects with a decrease in the levels of FtsZ and OMP-folding factor PpiD. These mutations led to strong constitutive additive induction of envelope responsive CpxR/A and σE signal transduction pathways. Δ(lpxL lpxM lpxP) mutant, with intact waaC, synthesized tetraacylated lipid A and constitutively incorporated a third Kdo in growth medium inducing synthesis of P-EtN and l-Ara4N. Overexpression of msbA restored growth of Δ(lpxL lpxM lpxP) under fast-growing conditions, but only partially that of the Δ(waaC lpxL lpxM lpxP) mutant. This suppression could be alleviated by overexpression of certain mutant msbA alleles or the single-copy chromosomal MsbA-498V variant in the vicinity of Walker-box II.

Citations

  • 7 7

    CrossRef

  • 0

    Web of Science

  • 7 5

    Scopus

Authors (5)

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
JOURNAL OF BIOLOGICAL CHEMISTRY no. 284, pages 15369 - 15389,
ISSN: 0021-9258
Language:
English
Publication year:
2009
Bibliographic description:
Klein-Raina G., Lindner B., Brabetz W., Brade H., Raina S.: Escherichia coli K-12 suppressor-free mutants lacking early glycosyltransferases and late acyltransferases. Minimal lipopolysaccharide structure and induction of envelope stress response.// JOURNAL OF BIOLOGICAL CHEMISTRY -Vol. 284,iss. 23 (2009), s.15369-15389
DOI:
Digital Object Identifier (open in new tab) 10.1074/jbc.m900490200
Verified by:
Gdańsk University of Technology

seen 52 times

Recommended for you

Meta Tags