Evaluati on of long-term start up costs impact on short-term price based operational optimization of a CCGT using MILP - Publication - Bridge of Knowledge

Search

Evaluati on of long-term start up costs impact on short-term price based operational optimization of a CCGT using MILP

Abstract

An increasing share of the weather-dependent RES generation in the power system leads to the growing importance of flexibility of conventional power plants. They were usually designed for base load operation and it is a challenge to determine the actual long-term cycling costs, which account for an increase in maintenance and overhaul expenditures, increased forced outage rates and shortened life expectancy of the plant and components. In this paper, the overall impact of start up costs is evaluated by formulating and solving price based unit commitment problem (PBUC). The electricity spot market is considered as a measure for remunerating flexibility. This approach is applied to a real-life case study based on the 70 MWe PGE Gorzów CCGT power plant. Different operation modes are calculated and results are used to derive a mixed integer linear programming (MILP) model to optimize the operation of the plant. The developed mathematical model is implemented in Python within the frame of the PuLP library and solved using GUROBI. Results of the application of the method to a numerical example are presented.

Citations

  • 2

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Cite as

Full text

download paper
downloaded 122 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
E3S Web of Conferences no. 137,
ISSN:
Language:
English
Publication year:
2019
Bibliographic description:
Gotzman S., Ziόłkowski P., Badur J.: Evaluati on of long-term start up costs impact on short-term price based operational optimization of a CCGT using MILP// E3S Web of Conferences -Vol. 137, (2019), s.01012-
DOI:
Digital Object Identifier (open in new tab) 10.1051/e3sconf/201913701012
Bibliography: test
  1. Bronk L., Czarnecki B., Magulski R., Elastyczność krajowego systemu elektroenergetycznego, Raport Forum Energii, (2019).
  2. Green R., Vasilakos N. Market behaviour with large amounts of intermittent generation, Energy Policy 38(7):3211-3220, (2010). open in new tab
  3. Macuk R., Maćkowiak-Pandera J., Gawlikowska- Fyk A., Rubczyński A., Transformacja energetyczna w Polsce, Raport Forum Energii, (2019).
  4. Lefton S. A., Hilleman D., Make Your Plant Ready for Cycling Operations, Intertek-Aptech, www.powermag.com, (2011).
  5. Dai H., Zhang N., Su W, A Literature Review of Stochastic Programming and Unit Commitment, Journal of Power and Energy Engineering, Vol. 3, pp. 206-214, (2015). open in new tab
  6. Biggar D., Hesamzadeh R., The Economics of Electricity Markets, John Wiley & Sons Ltd., (2014). open in new tab
  7. Arabas J., Mościcki M., Świrski K., Rozszerzenie zadania ekonomicznego rozdziału obciążeń w warunkach rynku energii, Transition Technologies SA, www.cire.pl, (2001).
  8. Angerer M., Djukow M., Riedl K., Gleis S., Hartmut S, Simulation of Cogeneration-Combined Cycle Plant Flexibilization by Thermochemical Energy Storage, Journal of Energy Resources Technology, Vol. 140(2), (2017). open in new tab
  9. Rist J., Dias M., Palman M., Zelazo D., Cukurel B., Economic dispatch of a single micro-gas turbine under CHP operation, Applied Energy, Vol. 200, pp. 1-18, (2017). open in new tab
  10. Papavasiliou A., He Y., Svoboda A., Self- Commitment of Combined Cycle Units Under Electricity Price Uncertainty. IEEE Transactions on Power Systems, Vol. 30, pp. 1690-1701, (2015). open in new tab
  11. Simoglou C., Biskas P., Bakirtzis A., Optimal Self- Scheduling of a Thermal Producer in Short-Term Electricity Markets by MILP, IEEE Transactions on Power Systems, Vol. 25, pp. 1965-1977, (2010). open in new tab
  12. Mitra, S., Sun L., Grossmann I., Optimal Scheduling of Industrial Combined Heat and Power Plants under Time-Sensitive Electricity Prices, Energy, Vol. 54, pp. 194-211. (2012) open in new tab
  13. Li, T., Shahidehpour, M., Price-Based Unit Commitment: A Case of Lagrangian Relaxation Versus Mixed Integer Programming. Power Systems, IEEE Transactions on Power Systems, Vol. 20, pp. 2015-2025, (2005). open in new tab
  14. López J., Gómez R., Guillén I., Practical commitment of combined cycle plants using dynamic programming. Proceedings of the 2010 open in new tab
  15. Electrical Power and Energy Conference, (2010). open in new tab
  16. Alemany J., Moitre D., Pinto H., Magnago F., Short- Term Scheduling of Combined Cycle Units Using Mixed Integer Linear Programming Solution, Energy and Power Engineering, Vol. 5, pp. 161- 170, (2013). open in new tab
  17. Carrion M., Arroyo J. M., A Computationally Efficient Mixed-Integer Linear Formulation for the Thermal Unit Commitment Problem, IEEE Transactions on Power Systems, Vol. 21(3), (2006). open in new tab
  18. Ackooij W., Lopez I., Frangioni A., Lacalandra F., Tahanan M., Large-scale unit commitment under uncertainty: an updated literature survey, Annals of Operations Research, Springer, Vol. 271(1), pp. 11- 85, (2018).
  19. Morales-España G., Latorre J., Ramos A., Tight and Compact MILP Formulation for the Thermal Unit Commitment Problem, IEEE Transactions on Power Systems, Vol. 28(4), (2013).. open in new tab
  20. Gülen S., Gas Turbines for Electric Power Generation, Cambridge University Press, (2019). open in new tab
  21. Schröder A., Kunz F., Meiss J., Mendelevitch R., von Hirschhausen C., Current and Prospective Costs of Electricity Generation until 2050, DIW Data Documentation, No. 68, Deutsches Institut für Wirtschaftsforschung (DIW), Berlin, (2013). open in new tab
  22. Ziółkowski P., Lemański M., Badur J., Nastałek L., Power augmentation of PGE Gorzow's gas turbine by steam injection -thermodynamic overview. open in new tab
  23. Rynek Energii, Vol. 98, pp. 161-167, (2012). open in new tab
  24. Kehlhofer R., Rukes B., Hannemann F., Stirnimann F., Combined-Cycle Gas & Steam Turbine Power Plants, PennWell Books (2009)..
  25. Chmielniak T., Lepszy S., Czaja D., Economic assessment of gas-steam systems taking account of variable loads, Journal of Power of Technologies, Vol. 95, pp. 54-62, (2015). open in new tab
  26. Mikołajuk H., Duda M., Radović U., Skwierz S., Lewarski M., Kowal I., Aktualizacja analizy porównawczej kosztów wytwarzania energii elektrycznej w elektrowniach jądrowych, węglowych i gazowych oraz odnawialnych źródłach energii, Agencja Rynku Energii, Warszawa, (2016).
  27. Prina M., Fanali L., Manzolini G., Moser D., Sparber W., Incorporating combined cycle gas turbine flexibility constraints and additional costs into the EPLANopt model: The Italian case study, Energy, Vol. 160, pp. 33-43, (2018). open in new tab
  28. Prina M., Fanali L., Manzolini G., Moser D., Sparber W., Incorporating combined cycle gas turbine flexibility constraints and additional costs into the EPLANopt model: The Italian case study, Energy, Vol. 160, pp. 33-43, (2018). open in new tab
  29. Marquant J., Evins R., Carmeliet J., Reducing Computation Time with a Rolling Horizon Approach Applied to a MILP Formulation of Multiple Urban Energy Hub System, Procedia Computer Science, Vol. 51, pp. 2137-2146, (2015). open in new tab
  30. Agora Energiewende, Flexibility in thermal power plants -With a focus on existing coal-fired power plants, (2017). open in new tab
Verified by:
Gdańsk University of Technology

seen 118 times

Recommended for you

Meta Tags