Expedited EM-Driven Design of Miniaturized Microwave Hybrid Couplers Using Surrogate-Based Optimization - Publication - Bridge of Knowledge

Search

Expedited EM-Driven Design of Miniaturized Microwave Hybrid Couplers Using Surrogate-Based Optimization

Abstract

Miniaturization of microwave hybrid couplers is important for contemporary wireless communication engineering. Using standard computer-aided design methods for development of compact structures is extremely challenging due to a general lack of computationally efficient and accurate simulation models. Poor accuracy of available equivalent circuits results from neglecting parasitic cross-couplings that greatly affect the performance of miniaturized devices. On the other hand, electromagnetic (EM) simulations may be very accurate, but at the same time they are extremely CPU-heavy and time consuming. The methodologies included in this dissertation address the problem of reliable and computationally efficient design of miniaturized hybrid couplers. The proposed methods are based on a generic SBO scheme and employ a number of customized techniques for development of fast and accurate surrogates. These techniques include decomposition, equivalent circuits, EM modeling, response surface approximations, and space mapping. The presented numerical results, confirmed also experimentally, indicate a dramatic reduction in the computational cost of the discussed methods (on average, 25 times speedup in comparison to direct EM optimization). A suite of novel hybrid couplers obtained in this work demonstrate outstanding miniaturization ratios ranging between 82% and 94% with good transmission characteristics. To the best of author’s knowledge, the developed methods are the only procedures so far in the literature that allow for obtaining high-performance EM-validated design solutions of miniaturized hybrid couplers at a low computational cost.

Cite as

Full text

download paper
downloaded 67 times
Publication version
Accepted or Published Version
License
Copyright (Author(s))

Keywords

Details

Category:
Thesis, nostrification
Type:
praca doktorska pracowników zatrudnionych w PG oraz studentów studium doktoranckiego
Language:
English
Publication year:
2017
Bibliography: test
  1. R. Gilmore and L. Besser, Practical RF Circuit Design for Modern Wireless Systems. Norwood: Artech House, 2003. open in new tab
  2. H.-R. Ahn, Asymmetric Passive Components in Microwave Integrated Circuits. New Jersey: John Wiley & Sons, Inc., 2006. open in new tab
  3. H.-X. Xu, G.-M. Wang, and K. Lu, -Microstrip rat-race couplers,‖ IEEE Microw. Mag., vol. 12, no. 4, pp. 117-129, 2011. open in new tab
  4. H.-R. Ahn and B. Kim, -Toward integrated circuit size reduction,‖ IEEE Microw. Mag., vol. 9, no. 1, pp. 65-75, 2008.
  5. J. Schiller, Mobile Communications. Pearson Education Limited, 2003.
  6. B. Fong, A. Fong, and C. Li, Telemedicine Technologies: Information Technologies in Medicine and Telehealth. Wiley, 2010. open in new tab
  7. S. Khorram, C. van der Wiele, C. Koch, S. Nelson, and M. Potts, Principles of Applied Remote Sensing. Springer, 2016. open in new tab
  8. F. Neri, Introduction to Electronic Defense Systems, Second Edition. Artech House, 2001.
  9. S. Ahn, -Electronic smart meter enabling demand response and method for demand response,‖ US Patent 20090198384 A1, Aug. 6, 2009.
  10. D. James, -Moore's law continues into the 1x-nm era,‖ in Int. Conf. Ion Implant. Techn., pp. 1-10, 2016. open in new tab
  11. G. Moore, -Cramming more components onto integrated circuits,‖ Electronics, vol. 38, no. 8, pp. 114- 117, 1965. open in new tab
  12. D. M. Pozar, Microwave Engineering, 2nd ed. New York: John Wiley & Sons, Inc., 1998.
  13. J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, 1st ed. New York: John Wiley & Sons, Inc., 2001. open in new tab
  14. IEEE Smart Grid Vision for Computing: 2030 and Beyond Roadmap, pp. 1-14, 2916. open in new tab
  15. R. Mongia, I. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits. Boston: Artech House, 1999.
  16. S. Staras, R. Martavicius, J. Skudutis, V. Urbanavicius, and V. Daskevicius, Wide-Band Slow-Wave Sys- tems: Simulation and Applications. Boca Raton: CRC Press, 2012. open in new tab
  17. T. Hirota, A. Minakawa, and M. Muraguchi, -Reduced-size branch-line and rat-race hybrids for uniplanar MMIC's,‖ IEEE Trans. Microw. Theory Techn., vol. 38, no. 3, pp. 270-275, 1990. open in new tab
  18. M. Gillick, I. Robertson, and J. Joshi, -Coplanar waveguide two-stage balanced MMIC amplifier using impedance-transforming lumped-distributed branchline couplers,‖ IEE Proc. Microw. Ant. Propag., vol. 141, no. 4, pp. 241-245, 1994. open in new tab
  19. Y.-C. Chiang and C.-Y. Chen, -Design of a wide-band lumped-element 3-dB quadrature coupler,‖ IEEE Trans. Microw. Theory Techn., vol. 49, no. 3, pp. 476-479, 2001. References 39
  20. Y. Li, Z. Zhang, Z. Li, J. Zheng, and Z. Feng, -High-permittivity substrate multiresonant antenna inside metallic cover of laptop computer,‖ IEEE Ant. Wireless Propag. Lett., vol. 10, pp. 1092-1095, 2011.
  21. Y.-C. Chen and C.-H. Hsu, -Inverted-E shaped monopole on high-permittivity substrate for application in industrial, scientific, medical, high-performance radio local area network, unlicensed national information infrastructure, and worldwide interoperability for microwave access,‖ IET Microw. Ant. Propag., vol. 8, no. 4, pp. 272-277, 2014. open in new tab
  22. V. Radisic, Y. Qian, R. Coccioli, and T. Itoh, -Novel 2-D photonic bandgap structure for microstrip lines,‖ IEEE Microw. Guided Wave Lett., vol. 8, no. 2, pp. 69-71, 1998. open in new tab
  23. F.-R. Yang, K.-P. Ma, Y. Qian, and T. Itoh, -A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit,‖ IEEE Trans. Microw. Theory Techn., vol. 47, no. 8, pp. 1509- 1514, 1999.
  24. C.-S. Kim, J.-S. Park, D. Ahn, and J.-B. Lim, -A novel 1-D periodic defected ground structure for planar circuits,‖ IEEE Microw. Guided Wave Lett., vol. 10, no. 4, pp. 131-133, 2000.
  25. I. Awai, H. Kubo, T. Iribe, D. Wakamiya, and A. Sanada, -An artificial dielectric material of huge permittivity with novel anisotropy and its application to a microwave BPF,‖ in IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, pp. 1085-1088, 2003. open in new tab
  26. F. Elek and G. Eleftheriades, -On the slow wave behaviour of the shielded mushroom structure,‖ in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1333-1336, 2008. open in new tab
  27. F. Mbairi and H. Hesselbom, -Microwave bandstop filters using novel artificial periodic substrate electromagnetic band gap structures,‖ IEEE Trans. Compon. Packag. Technol., vol. 32, no. 2, pp. 273- 282, 2009. open in new tab
  28. Q. Xue, K. Shum, and C. Chan, -Novel 1-D microstrip PBG cells,‖ IEEE Microw. Guided Wave Lett., vol. 10, no. 10, pp. 403-405, 2000.
  29. T.-Y. Yun and K. Chang, -Uniplanar one-dimensional photonic-bandgap structures and resonators,‖ IEEE Trans. Microw. Theory Techn., vol. 49, no. 3, pp. 549-553, 2001. open in new tab
  30. K. M. Shum, Q. Xue, and C. H. Chan, -A novel microstrip ring hybrid incorporating a PBG cell,‖ IEEE Microw. Wireless Comp. Lett., vol. 11, no. 6, pp. 258-260, 2001.
  31. Q. Xue, K. Shum, and C. Chan, -Low conversion-loss fourth subharmonic mixers incorporating CMRC for millimeter-wave applications,‖ IEEE Trans. Microw. Theory Techn., vol. 51, no. 5, pp. 1449-1454, 2003.
  32. B.-L. Ooi, -Compact EBG in-phase hybrid-ring equal power divider,‖ IEEE Trans. Microw. Theory Techn., vol. 53, no. 7, pp. 2329-2334, 2005.
  33. J. Gu and X. Sun, -Miniaturization and harmonic suppression rat-race coupler using C-SCMRC resonators with distributive equivalent circuit,‖ IEEE Microw. Wireless Comp. Lett., vol. 15, no. 12, pp. 880-882, 2005.
  34. C. Zhou and H.-Y. Yang, -Design considerations of miniaturized least dispersive periodic slow-wave structures,‖ IEEE Trans. Microw. Theory Techn., vol. 56, no. 2, pp. 467-474, 2008. open in new tab
  35. C. M. Lin, H. H. Su, J. C. Chiu, and Y. H. Wang, -Wilkinson power divider using microstrip EBG cells for the suppression of harmonics,‖ IEEE Microw. Wireless Comp. Lett., vol. 17, no. 10, pp. 700-702, 2007. open in new tab
  36. P. Kurgan, J. Filipcewicz, and M. Kitlinski, -Design considerations for compact microstrip resonant cells dedicated to efficient branch-line miniaturization,‖ Microw. Opt. Techn. Lett., vol. 54, no. 8, pp. 1949- 1954, 2012. open in new tab
  37. E. Gandini, M. Ettorre, R. Sauleau, and A. Grbic, -A lumped-element unit cell for beam-forming networks and its application to a miniaturized Butler matrix,‖ IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1477-1487, 2013. open in new tab
  38. J.-A. Hou and Y.-H. Wang, -Design of compact 90° and 180° couplers with harmonic suppression using lumped-element bandstop resonators,‖ IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 2932- 2939, 2010. open in new tab
  39. L. Brillouin, Wave Propagation in Periodic Structures, 1st ed. New York: McGraw-Hill Book Company, Inc., 1946. open in new tab
  40. F. Martin, Artificial Transmission Lines for RF and Microwave Applications. Wiley, 2015. open in new tab
  41. P. Kurgan and M. Kitlinski, -Novel doubly perforated broadband microstrip branch-line couplers,‖ Microw. Opt. Techn. Lett., vol. 51, no. 9, pp. 2149-2152, 2009. open in new tab
  42. Y.-H. Chun and J.-S. Hong, -Compact wide-band branch-line hybrids,‖ IEEE Trans. Microw. Theory Techn., vol. 54, no. 2, pp. 704-709, 2006. References
  43. J. Wang, B. Z. Wang, Y. X. Guo, L. C. Ong, and S. Xiao, -A compact slow-wave microstrip branch-line coupler with high performance,‖ IEEE Microw. Wireless Comp. Lett., vol. 17, no. 7, pp. 501-503, 2007. open in new tab
  44. P. Kurgan and M. Kitlinski, -Doubly miniaturized rat-race hybrid coupler,‖ Microw. Opt. Techn. Lett., vol. 53, no. 6, pp. 1242-1244, 2011. open in new tab
  45. P. Kurgan and M. Kitlinski, -Slow-wave fractal-shaped compact microstrip resonant cell,‖ Microw. Opt. Techn. Lett., vol. 52, no. 11, pp. 2613-2615, 2010. open in new tab
  46. S. Koziel and P. Kurgan, -Rapid design of miniaturised branch-line couplers through concurrent cell optimisation and surrogate-assisted fine-tuning,‖ IET Microw. Ant. Propag., vol. 9, no. 9, pp. 957-963, 2015. open in new tab
  47. P. Kurgan and S. Koziel, -Fast surrogate-assisted simulation-driven optimization of compact microwave hybrid couplers,‖ Eng. Opt., vol. 48, no. 7, pp. 1109-1120, 2016. open in new tab
  48. S. Koziel and P. Kurgan, -Low-cost optimization of compact branch-line couplers and its application to miniaturized Butler matrix design,‖ in European Microw. Conf., pp. 227-230, 2014. open in new tab
  49. S. Ogurtsov and S. Koziel, -Automated design of circularly polarized microstrip patch antennas with improved axial ratio,‖ in Loughborough Ant. Propag. Conf., pp. 1-5, 2016. open in new tab
  50. S. Koziel, X. Yang, and Q. Zhang, Eds., Simulation-Driven Design Optimization and Modeling for Mi- crowave Engineering. Imperial College Press, 2012. open in new tab
  51. C. L. Hsu and J. T. Kuo, -Design of dual-band branch line couplers with circuit miniaturization,‖ in Asia- Pacific Microw. Conf., pp. 1-4, 2008.
  52. C. W. Wang, T. G. Ma, and C. F. Yang, -A new planar artificial transmission line and its applications to a miniaturized Butler matrix,‖ IEEE Trans. Microw. Theory Techn., vol. 55, no. 12, pp. 2792-2801, 2007. open in new tab
  53. A. Bekasiewicz and P. Kurgan, -A compact microstrip rat-race coupler constituted by nonuniform trans- mission lines,‖ Microw. Opt. Techn. Lett., vol. 56, no. 4, pp. 970-974, 2014. open in new tab
  54. S. Koziel and A. Bekasiewicz, -Novel structure and size-reduction-oriented design of microstrip compact rat-race coupler,‖ in Int. Rev. Prog. Appl. Comp. Electromagn., pp. 1-2, 2016. open in new tab
  55. S. Koziel and A. Bekasiewicz, -Expedited geometry scaling of compact microwave passives by means of inverse surrogate modeling,‖ IEEE Trans. Microw. Theory Techn., vol. 63, no. 12, pp. 4019-4026, 2015. open in new tab
  56. S. Koziel, A. Bekasiewicz, and P. Kurgan, -Rapid multi-objective simulation-driven design of compact microwave circuits,‖ IEEE Microw. Wireless Comp. Lett., vol. 25, no. 5, pp. 277-279, 2015. open in new tab
  57. S. Koziel and X. Yang, Eds., Computational Optimization, Methods and Algorithms, series Studies in Computational Intelligence. Springer, 2011, vol. 356. open in new tab
  58. N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and P. K. Tucker, -Surrogate-based analysis and optimization,‖ Prog. Aerosp. Scie., vol. 41, pp. 1-28, 2005. open in new tab
  59. M. B. Yelten, T. Zhu, S. Koziel, P. D. Franzon, and M. B. Steer, -Demystifying surrogate modeling for circuits and systems,‖ IEEE Circ. Syst. Mag., vol. 12, no. 1, pp. 45-63, 2012. open in new tab
  60. S. Koziel and L. Leifsson, Eds., Surrogate-Based Modeling and Optimization: Applications in Engineer- ing. Springer, 2013. open in new tab
  61. J. W. Bandler, Q. S. Cheng, S. A. Dakroury, A. S. Mohamed, M. H. Bakr, K. Madsen, and J. Sondergaard, -Space mapping: the state of the art,‖ IEEE Trans. Microw. Theory Techn., vol. 52, no. 1, pp. 337-361, 2004. open in new tab
  62. S. Koziel, Q. S. Cheng, and J. W. Bandler, -Space mapping,‖ IEEE Microw. Mag., vol. 9, no. 6, pp. 105- 122, 2008. open in new tab
  63. P. Kurgan, A. Bekasiewicz, and M. Kitlinski, -On the low-cost design of abbreviated multisection planar matching transformer,‖ Microw. Opt. Techn. Lett., vol. 57, no. 3, pp. 521-525, 2015. open in new tab
  64. S. Koziel, J. W. Bandler, and K. Madsen, -Quality assessment of coarse models and surrogates for space mapping optimization,‖ Opt. Eng., vol. 9, no. 4, pp. 375-391, 2008. open in new tab
  65. S. Koziel, A. Bekasiewicz, and P. Kurgan, -Rapid EM-driven design of compact RF circuits by means of nested space mapping,‖ IEEE Microw. Wireless Comp. Lett., vol. 24, no. 6, pp. 364-366, 2014. open in new tab
  66. S. Li, X. Fan, and P. D. Laforge, -Automated EM-based design of bandpass filter by sequential parameter extraction and space mapping technique,‖ in IEEE MTT-S Int. Conf. Num. Electromagn. Multiph. Model. Opt., pp. 1-4, 2015. open in new tab
  67. S. Koziel and S. Ogurtsov, -Microwave design optimization using local response surface approximations and variable-fidelity electromagnetic models,‖ in European Microw. Conf., pp. 448-451, 2011. open in new tab
  68. A. I. Forrester and A. J. Keane, -Recent advances in surrogate-based optimization,‖ Prog. Aerosp. Sci., vol. 45, no. 1-3, pp. 50-79, 2009. References 41 open in new tab
  69. S. Koziel and A. Bekasiewicz, -Low-fidelity model considerations for EM-driven design of antenna structures,‖ J. Electromagnetic Waves Appl., vol. 30, no. 18, pp. 2444-2458, 2016. open in new tab
  70. S. Koziel and S. Ogurtsov, -Multi-objective design of antennas using variable-fidelity simulations and surrogate models,‖ IEEE Trans. Ant. Prop., vol. 61, no. 12, pp. 5931-5939, 2013. open in new tab
  71. R. K. Settaluri, G. Sundberg, A. Weisshaar, and V. K. Tripathi, -Compact folded line rat-race hybrid couplers,‖ IEEE Microw. Guided Wave Lett., vol. 10, no. 2, pp. 61-63, 2000. open in new tab
  72. K.-O. Sun, S.-J. Ho, C.-C. Yen, and D. van der Weide, -A compact branch-line coupler using discontinuous microstrip lines,‖ IEEE Microw. Wireless Comp. Lett., vol. 15, no. 8, pp. 519-520, 2005.
  73. K. S. Chin, K. M. Lin, Y. H. Wei, T. H. Tseng, and Y. J. Yang, -Compact dual-band branch-line and rat- race couplers with stepped-impedance-stub lines,‖ IEEE Trans. Microw. Theory Techn., vol. 58, no. 5, pp. 1213-1221, 2010.
  74. P. Kurgan and A. Bekasiewicz, -A robust design of a numerically demanding compact rat-race coupler,‖ Microw. Opt. Techn. Lett., vol. 56, no. 5, pp. 1259-1263, 2014. open in new tab
  75. C. H. Tseng and C. H. Wu, -Design of compact branch-line couplers using π-equivalent artificial transmission lines,‖ IET Microw. Ant. Propag., vol. 6, no. 9, pp. 969-974, 2012. open in new tab
  76. P. Kurgan, J. Filipcewicz, and M. Kitlinski, -Development of a compact microstrip resonant cell aimed at efficient microwave component size reduction,‖ IET Microw. Ant. Propag., vol. 6, no. 12, pp. 1291-1298, 2012. open in new tab
  77. K. W. Eccleston and S. H. M. Ong, -Compact planar microstripline branch-line and rat-race couplers,‖ IEEE Trans. Microw. Theory Techn., vol. 51, no. 10, pp. 2119-2125, 2003. open in new tab
  78. C. W. Wang, T. G. Ma, and C. F. Yang, -Miniaturized branch-line coupler with harmonic suppression for RFID applications using artificial transmission lines,‖ in IEEE MTT-S Int. Microw. Symp., pp. 29-32, 2007. open in new tab
  79. S. C. Jung, R. Negra, and F. M. Ghannouchi, -A design methodology for miniaturized 3-dB branch-line hybrid couplers using distributed capacitors printed in the inner area,‖ IEEE Trans. Microw. Theory Techn., vol. 56, no. 12, pp. 2950-2953, 2008.
  80. C. H. Tseng and H. J. Chen, -Compact rat-race coupler using shunt-stub-based artificial transmission lines,‖ IEEE Microw. Wireless Comp. Lett., vol. 18, no. 11, pp. 734-736, 2008. open in new tab
  81. P. Mondal and A. Chakrabarty, -Design of miniaturised branch-line and rat-race hybrid couplers with harmonics suppression,‖ IET Microw. Ant. Propag., vol. 3, no. 1, pp. 109-116, 2009. open in new tab
  82. J. T. Kuo, J. S. Wu, and Y. C. Chiou, -Miniaturized rat race coupler with suppression of spurious passband,‖ IEEE Microw. Wireless Comp. Lett., vol. 17, no. 1, pp. 46-48, 2007. open in new tab
  83. S.-S. Liao, P.-T. Sun, N.-C. Chin, and J.-T. Peng, -A novel compact-size branch-line coupler,‖ IEEE Microw. Wireless Comp. Lett., vol. 15, no. 9, pp. 588-590, 2005.
  84. P. Kurgan and S. Koziel, -Design of high-performance hybrid branch-line couplers for wideband and space-limited applications,‖ IET Microw. Ant. Propag., vol. 10, no. 12, pp. 1339-1344, 2016. open in new tab
  85. C. H. Tseng and C. L. Chang, -A rigorous design methodology for compact planar branch-line and rat- race couplers with asymmetrical T-structures,‖ IEEE Trans. Microw. Theory Techn., vol. 60, no. 7, pp. 2085-2092, 2012. open in new tab
  86. C. W. Tang and M. G. Chen, -Synthesizing microstrip branch-line couplers with predetermined compact size and bandwidth,‖ IEEE Trans. Microw. Theory Techn., vol. 55, no. 9, pp. 1926-1934, 2007. open in new tab
  87. T.-G. Ma, C.-W. Wang, C.-H. Lai, and Y.-C. Tseng, Synthesized Transmission Lines. Design, Circuit Implementation, and Phased Array Applications. Wiley, 2017. open in new tab
  88. B.-Q. Lin, Q.-R. Zheng, and N.-C. Yuan, -A novel planar PBG structure for size reduction,‖ IEEE Microw. Wireless Comp. Lett., vol. 16, no. 5, pp. 269-271, 2006.
  89. K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. New York: John Wiley & Sons, 2001. open in new tab
  90. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, 3rd ed. Berlin Heidelberg: Springer-Verlag, 1996. open in new tab
  91. S. Chamaani, M. Abrishamian, and S. Mirtaheri, -Time-domain design of UWB Vivaldi antenna array using multiobjective particle swarm optimization,‖ IEEE Ant. Wireless Prop. Lett., vol. 9, pp. 666-669, 2010. open in new tab
  92. C. Coello Coello, G. Lamont, and D. Van Veldhuizen, Evolutionary Algorithms for Solving Multi- Objective Problems. New York: Springer, 2007. References
  93. A. Bekasiewicz and S. Koziel, -Structure and computationally efficient simulation-driven design of com- pact UWB monopole antenna,‖ IEEE Ant. Wireless Propag. Lett., vol. 14, pp. 1282-1285, 2015. open in new tab
  94. M. John and M. Ammann, -Antenna optimization with a computationally efficient multiobjective evolu- tionary algorithm,‖ IEEE Trans. Ant. Prop., vol. 57, no. 1, pp. 260-263, 2009. open in new tab
  95. Sonnet, v. 14.54, Sonnet Software, North Syracuse, NY, United States, 2013. open in new tab
  96. CST Microwave Studio, v. 2013, CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany, 2013. open in new tab
  97. S. Koziel, A. Bekasiewicz, and P. Kurgan, Simulation and Modeling Methodologies, Technologies and Applications. Springer, 2014, ch. Computationally-Efficient EM-Simulation-Driven Multi-Objective De- sign of Compact Microwave Structures, pp. 235-250. open in new tab
  98. S. Koziel, A. Bekasiewicz, and P. Kurgan, Solving Computationally Expensive Engineering Problems. Methods and Applications. Springer, 2014, ch. Nested Space Mapping Technique for Design and Optimi- zation of Complex Microwave Structures with Enhanced Functionality, pp. 53-86. open in new tab
  99. P. Kurgan and A. Bekasiewicz, Solving Computationally Expensive Engineering Problems. Methods and Applications. Springer, 2014, ch. Atomistic Surrogate-Based Optimization for Simulation-Driven Design of Computationally Expensive Microwave Circuits with Compact Footprints, pp. 195-218. open in new tab
  100. S. Koziel, P. Kurgan, and A. Bekasiewicz, Computational Sustainability. Springer, 2016, ch. Computa- tionally Efficient Design Optimization of Compact Microwave and Antenna Structures, pp. 195-218. open in new tab
  101. R. E. Amaya and C. J. Verver, -A 60 GHz CMOS balanced downconversion mixer with a layout efficient 90° hybrid coupler,‖ in IEEE Cust. Integr. Circ. Conf., pp. 235-238, 2009. open in new tab
  102. M. Arrawatia, M. S. Baghini, and G. Kumar, -A CMOS power amplifier with 180° hybrid on-chip cou- pler for 4G applications,‖ in IEEE Int. Midwest Symp. Circ. Syst., pp. 1-4, 2015. open in new tab
  103. S. Koziel, L. Leifsson, and X. Yang, Eds., Solving Computationally Expensive Engineering Problems. Methods and Applications. Springer, 2016. open in new tab
  104. Agilent (Keysight) ADS, v. 2011.10, Agilent Technologies, 1400 Fountaingrove Parkway, Santa Rosa, CA 95403-1799, 2011.
  105. J. He, B. Z. Wang, and W. Shao, -Compact power divider embedded with zigzag microstrip slow-wave structures,‖ Electronics Lett., vol. 45, no. 1, pp. 62-63, 2009. open in new tab
  106. A. Bekasiewicz and S. Koziel, -Cost-efficient simulation-driven design of compact impedance matching transformers,‖ in Int. Conf. Microw. Rad. Wireless Comm., pp. 1-4, 2016. open in new tab
  107. A. Bekasiewicz, S. Koziel, and L. Leifsson, -Fast multi-objective design optimization of compact UWB matching transformers using variable-fidelity EM simulations and design space reduction,‖ in IEEE MTT- S Int. Conf. Num. Electromagn. Multiph. Model. Opt., pp. 1-3, 2015. open in new tab
  108. D. Nesic, -A new type of slow-wave 1-D PBG microstrip structure without etching in the ground plane for filter and other applications,‖ Microw. Opt. Techn. Lett., vol. 33, no. 6, pp. 440-443, 2002. open in new tab
  109. J. Gu and X. Sun, -Compact lowpass filter using spiral compact microstrip resonant cells,‖ Electronics Lett., vol. 41, no. 19, pp. 1065-1066, 2005. open in new tab
  110. R. Chipman, Theory and Problems of Transmission Lines. New York: McGraw-Hill Book Company, Inc., 1968.
  111. W. Mason and R. Sykes, -The use of coaxial and balanced transmission lines in filters and wide band transformers for high radio frequencies,‖ The Bell Syst. Techn. J., vol. 16, no. 3, pp. 275-302, 1937. open in new tab
  112. S. Ballantine, -Non-uniform lumped electric lines,‖ J. Franklin Institute, vol. 203, pp. 849-853, 1927. open in new tab
  113. C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Appli- cations. Wiley, 2005. open in new tab
  114. R. Gupta and W. Getsinger, -Quasi-lumped-element 3-and 4-port networks for MIC and MMIC applica- tions,‖ in IEEE MTT-S Int. Microw. Symp., pp. 409-411, 1984. open in new tab
  115. S. Opozda, P. Kurgan, and M. Kitlinski, -A compact seven-section rat-race hybrid coupler incorporating PBG cells,‖ Microw. Opt. Tech. Lett., vol. 51, no. 11, pp. 2910-2913, 2009. open in new tab
  116. C. Caloz, -Dual composite right/left-handed (D-CRLH) transmission line metamaterial,‖ IEEE Microw. Wireless Comp. Lett., vol. 16, no. 11, pp. 585-587, 2006. open in new tab
  117. R. Collin, Foundations for Microwave Engineering, 2nd ed., series IEEE Press Series on Electromagnetic Wave Theory. New York: John Wiley & Sons, Inc., 2001.
  118. S. Seki and H. Hasegawa, -Cross-tie slow-wave coplanar waveguide on semi-insulating GaAs substrates,‖ Electron. Lett., vol. 17, no. 25, pp. 940-941, 1981. References 43 open in new tab
  119. J. Gu and X. Sun, -Miniaturization and harmonic suppression of branch-line and rat-race hybrid coupler using compensated spiral compact microstrip resonant cell,‖ in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1211-1214, 2005.
  120. J. Rautio, -Planar electromagnetic analysis,‖ IEEE Microw. Mag., vol. 4, no. 1, pp. 35-41, 2003. open in new tab
  121. J. Nocedal and S. Wright, Numerical Optimization. Springer Science, 2006. open in new tab
  122. M. Kazemi, G. Wang, S. Rahnamayan, and K. Gupta, -Metamodel-based optimization for problems with expensive objective and constraint functions,‖ ASME J. Mech. Des., vol. 133, no. 1, pp. 014505-1- 014505-7, 2011. open in new tab
  123. A. Basudhar, C. Dribusch, S. Lacaze, and S. Missoum, -Constrained efficient global optimization with support vector machines,‖ Struct. Multidisc. Optim., vol. 46, pp. 201-221, 2012. open in new tab
  124. T. Kolda, R. Lewis, and V. Torczon, -Optimization by direct search: new perspective and some classical and modern methods.‖ SIAM Rev., vol. 45, pp. 385-482, 2003. open in new tab
  125. S. Koziel and L. Leifsson, Simulation-Driven Design by Knowledge-Based Response Correction Techniques. Springer, 2016. open in new tab
  126. A. Conn, N. Gould, and P. Toint, Trust Region Method, series MOS-SIAM Series on Optimization. Springer Science, 2000. open in new tab
  127. X. Yang, Engineering Optimization: An Introduction with Metaheuristic Applications. Wiley, 2010. open in new tab
  128. A. Conn, N. Gould, and P. Toint, Introduction to Derivative-Free Optimization, series MOS-SIAM Series on Optimization. SIAM, 2009.
  129. S. Koziel and S. Ogurtsov, Antenna Design by Simulation-Driven Optimization. Springer, 2014. open in new tab
  130. D. Goldberg, Genetic Algorithms in Search, Optimization & Machine Learning. New York: Pearson Education, 1989. open in new tab
  131. T. Back, D. Fogel, and Z. Michalewicz, Eds., Evolutionary Computation 1: Basic Algorithms and Operators. New York: Taylor & Francis Group, 2000. open in new tab
  132. J. Kennedy, R. Eberhart, and Y. Shi, Swarm Intelligence. New York: Academic Press, 2001. open in new tab
  133. R. Storn and K. Price, -Differential evolution -a simple and efficient heuristic for global optimization over continuous spaces,‖ J. Global. Optim., vol. 11, pp. 341-359, 1997. open in new tab
  134. N. Alexandrov and R. Lewis, -An overview of first-order model management for engineering optimization,‖ Opt. Eng., vol. 2, pp. 413-430, 2001. open in new tab
  135. S. Koziel, S. Ogurtsov, J. Bandler, and Q. Cheng, -Reliable space mapping optimization integrated with em-based adjoint sensitivities,‖ IEEE Trans. Microw. Theory Tech., vol. 61, no. 10, pp. 3493-3502, 2013. open in new tab
  136. S. Koziel and S. Ogurtsov, -Multi-level microwave design optimization with automated model fidelity adjustmenet,‖ Int. J. RF Microw. Comp. Aid. Eng., vol. 24, no. 3, pp. 281-288, 2014. open in new tab
  137. D. Echeverria and P. Hemker, -Manifold mapping: a two-level optimization technique,‖ Comput. Visual. Sci., vol. 11, no. 4, pp. 193-206, 2008. open in new tab
  138. A. Booker, J. Dennis, P. Frank, D. Serafini, V. Torczon, and M. Trosset, -A rigorous framework for optimization of expensive functions by surrogates,‖ Struct. Opt., vol. 17, no. 1, pp. 1-13, 1999. open in new tab
  139. S. Koziel, J. Bandler, and K. Madsen, -A space mapping framework for engineering optimization: theory and implementation,‖ IEEE Trans. Microw. Theory Tech., vol. 54, no. 10, pp. 3721-3730, 2006. open in new tab
  140. J. Bandler, Q. Cheng, N. Nikolova, and M. Ismail, -Implicit space mapping optimization exploiting preassigned parameters,‖ IEEE Trans. Microw. Theory Tech., vol. 52, no. 1, pp. 378-385, 2004. References open in new tab
  141. P. Kurgan and M. Kitlinski, -Novel doubly perforated broadband microstrip branch-line couplers,‖ Microw. Opt. Tech. Lett., vol. 51, no. 9, pp. 2149-2152, 2009. open in new tab
  142. S. Opozda, P. Kurgan, and M. Kitlinski, -A compact seven-section rat-race hybrid coupler incor- porating PBG cells,‖ Microw. Opt. Tech. Lett., vol 51, no. 12, pp. 2910-2913, 2009. open in new tab
  143. P. Kurgan and M. Kitlinski, -Slow-wave fractal-shaped compact microstrip resonant cell,‖ Mi- crow. Opt. Tech. Lett., vol. 52, no. 11, pp. 2613-2615, 2010. open in new tab
  144. P. Kurgan and M. Kitlinski, -Doubly miniaturized rat-race hybrid coupler,‖ Microw. Opt. Tech. Lett., vol. 53, no. 6, pp. 1242-1244, 2011. open in new tab
  145. P. Kurgan, J. Filipcewicz, and M. Kitlinski, -Design considerations for compact microstrip reso- nant cells dedicated to efficient branch-line miniaturization,‖ Microw. Opt. Tech. Lett., vol. 54, no. 8, pp. 1949-1954, 2012. open in new tab
  146. H.L. Zhang, B.J. Hu, and X.Y. Zhang, -Compact equal and unequal dual-frequency power divid- ers based on composite right/left-handed transmission line,‖ IEEE Trans. Ind. Electron., vol. 59, no. 9, pp. 3464-3472, 2012.
  147. H.-X. Xu, G.-M. Wang, C.-X. Zhang, Z.-W. Yu, and X. Chen, ‖Composite right/left-handed transmission line based on complementary single-split ring resonator pair and compact power di- viders application using fractal geometry,‖ IET Microw. Ant. Propag., vol. 6, no. 9, pp. 1017- 1025, 2012. open in new tab
  148. P. Kurgan and M. Kitlinski, -Novel microstrip low-pass filters with fractal defected ground struc- tures,‖ Microw. Opt. Tech. Lett., vol. 51, no. 10, pp. 2473-2477, 2009. open in new tab
  149. M. Smierzchalski, P. Kurgan, and M. Kitlinski, -Improved selectivity compact band-stop filter with Gosper fractal-shaped defected ground structures,‖ Microw. Opt. Tech. Lett., vol. 52, no. 1, pp. 227-232, 2010. open in new tab
  150. P. Kurgan, A. Bekasiewicz, M. Pietras, and M. Kitlinski, -Novel topology of compact coplanar waveguide resonant cell low-pass filter,‖ Microw. Opt. Tech. Lett., vol. 54, no. 2, pp. 732-735, 2012. open in new tab
  151. J.W. Bandler, R.M. Biernacki, S.H. Chen, P.A. Grobelny, and R.H. Hemmers, -Space mapping technique for electromagnetic optimization,‖ IEEE Trans. Microw. Theory Tech., vol. 42, no. 12, pp. 2536-2544, 1994. Sequential Space Mapping open in new tab
  152. M.H. Bakr, J.W. Bandler, R.M. Biernacki, S.H. Chen, and K. Madsen, -A trust region aggressive space mapping algorithm for EM optimization,‖ IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2412-2425, 1998. open in new tab
  153. M.H. Bakr, J.W. Bandler, N. Georgieva, and K. Madsen, -A hybrid aggressive space-mapping algorithm for EM optimization,‖ IEEE Trans. Microw. Theory Tech., vol. 47, no. 12, pp. 2440- 2449, 1999. open in new tab
  154. J.W. Bandler, M.A. Ismail, J.E. Rayas-Sánchez, and Q.-J. Zhang, -Neuromodeling of microwave circuits exploiting space-mapping technology,‖ IEEE Trans. Microw. Theory Tech., vol. 47, no. 12, pp. 2417-2427, 1999. open in new tab
  155. M.H. Bakr, J.W. Bandler, M.A Ismail, J.E. Rayas-Sánchez, and Q.-J. Zhang, -Neural space- mapping optimization for EM-based design,‖ IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2307-2315, 2000. open in new tab
  156. J.W. Bandler, Q.S. Cheng, N.K. Nikolova, and M.A. Ismail, -Implicit space mapping optimization exploiting preassigned parameters,‖ IEEE Trans. Microw. Theory Tech., vol. 52, no. 1, pp. 378- 385, 2004. open in new tab
  157. S. Koziel, Q.S. Cheng, and J.W. Bandler, -Implicit space mapping with adaptive selection of pre- assigned parameters,‖ IET Microw. Ant. Propag., vol. 4, no. 3, pp. 361-373, 2010. open in new tab
  158. S. Koziel and J.W. Bandler, -A space-mapping approach to microwave device modeling exploit- ing fuzzy systems,‖ IEEE Trans. Microw. Theory Tech., vol. 55, no. 12, pp. 2539-2547, 2007. open in new tab
  159. S. Koziel, J. Meng, J.W. Bandler, M.H. Bakr, and Q.S. Cheng, -Accelerated microwave design optimization with tuning space mapping,‖ IEEE Trans. Microw. Theory Tech., vol. 57, no. 2, pp. 383-394, 2009. open in new tab
  160. Q.S. Cheng, J.C. Rautio, J.W. Bandler, and S. Koziel, -Progress in simulator-based tuning -the art of tuning space mapping,‖ IEEE Microw. Mag., vol. 11, no. 4, pp. 96-110, 2010. open in new tab
  161. S. Koziel and S. Ogurtsov, -Robust design of UWB antennas using response surface approxima- tions and manifold mapping,‖ European Conf. Ant. Propag., pp. 773-775, Prague, 2012. open in new tab
  162. S. Koziel, C. Echeverría, and L. Leifsson, -Surrogate-based methods,‖ in S. Koziel and X.-S. open in new tab
  163. Yang, (Eds.): Computational optimization, methods and algorithms, Series: Studies in Computa- tional Intelligence, vol. 356, pp. 33-59, Springer, 2011. open in new tab
  164. S. Koziel, Q.S. Cheng, and J.W. Bandler, -Space mapping,‖ IEEE Microw. Mag., vol. 9, no. 6, pp. 105-122, 2008. open in new tab
  165. Agilent Momentum, ver. 2011.10, Agilent Technologies, 1400 Fountaingrove Parkway, Santa Rosa, CA 95403-1799, 2011.
  166. Agilent ADS, ver. 2011.10, Agilent Technologies, 1400 Fountaingrove Parkway, Santa Rosa, CA 95403-1799, 2011.
  167. C.-H. Tseng and H.-J. Chen, -Compact Rat-Race Coupler Using Shunt-Stub-Based Artificial Transmis- sion Lines,‖ IEEE Microw. Wireless Comp. Lett., vol. 18, no. 11, pp. 734-736, 2008. open in new tab
  168. H.-W. Wu, S.-H. Huang, and Y.-F. Chen, -Design of New Quad-Channel Diplexer With Compact Circuit Size,‖ IEEE Microw. Wireless Comp. Lett., vol. 23, no. 5, pp. 240-242, 2013. open in new tab
  169. J.W. Bandler, Q.S. Cheng, S.A. Dakroury, A.S. Mohamed, M.H. Bakr, K. Madsen, and J. Søndergaard, -Space mapping: the state of the art,‖ IEEE Trans. Microw. Theory Techn., vol. 52, no. 1, pp. 337-361, 2004. open in new tab
  170. S. Koziel, J.W. Bandler, and K. Madsen, ‖Quality assessment of coarse models and surrogates for space mapping optimization,‖ Opt. Eng., vol. 9, no. 4, pp. 375-391, 2008. open in new tab
  171. A. Bekasiewicz, P. Kurgan, and M. Kitlinski, -New approach to a fast and accurate design of micro- wave circuits with complex topologies,‖ IET Microw. Ant. Prop., vol. 6, no. 14, pp. 1616-1622, 2012. open in new tab
  172. P. Kurgan and A. Bekasiewicz, -A robust design of a numerically demanding t rat-race coupler,‖ Mi- crow. Opt. Tech. Lett., vol. 56, no. 5, pp. 1259-1263, 2014. open in new tab
  173. S. Koziel, L. Leifsson, and X.S. Yang, -Surrogate-based optimization,‖ S. Koziel, X.S. Yang, Q.J. Zhang (Eds.) Simulation-Driven Design Optimization and Modeling for Microwave Engineering, Impe- rial College Press, pp. 41-80, 2012. open in new tab
  174. CST Microwave Studio, ver. 2013, CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany, 2013. open in new tab
  175. Agilent ADS, ver. 2011.10, Agilent Technologies, 1400 Fountaingrove Parkway, Santa Rosa, CA 95403-1799, 2011.
  176. D. M. Pozar, Microwave Engineering, John Wiley & Sons, New York, 1998. open in new tab
  177. R. Mongia, I. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits, Artech House Pub- lishers, Norwood, MA, 1999.
  178. H.-X. Xu, G.-M. Wang, and K. Lu, -Microstrip Rat-Race Couplers,‖ IEEE Microw. Mag., vol. 12, no. 4, pp. 117-129, 2011. open in new tab
  179. P. Kurgan, J. Filipcewicz, and M. Kitlinski, -Development of a compact microstrip resonant cell aimed at efficient microwave component size reduction, ‖ IET Microw. Ant. Propag., vol. 6, no. 12, pp. 1291-1298, 2012. open in new tab
  180. A. Bekasiewicz and P. Kurgan, -A compact microstrip rat-race coupler constituted by nonuniform transmission lines,‖ Microw. Opt. Techn. Lett., vol. 56, no. 4, pp. 970-974, 2014. open in new tab
  181. S. Koziel, -Computationally efficient multi-fidelity multi-grid design optimization of microwave structures,‖ Appl. Comp. Electromagn. Soc. J., vol. 25, no. 7, pp. 578-586, 2010.
  182. S. Koziel and X.S. Yang (Eds.), -Computational optimization, methods and algorithms,‖ Series: Studies in Computational Intelligence, vol. 356, Springer, 2011. open in new tab
  183. S. Koziel, J.W. Bandler, and K. Madsen, -Towards a rigorous formulation of the space mapping technique for engineering design,‖ Proc. Int. Symp. Circ., Syst., vol. 1, pp. 5605-5608, 2005. open in new tab
  184. J.W. Bandler, Q.S. Cheng, S.A. Dakroury, A.S. Mohamed, M.H. Bakr, K. Madsen, and J. Sønder- gaard, -Space mapping: the state of the art,‖ IEEE Trans. Microw. Theory Techn., vol. 52, no. 1, pp. 337-361, 2004. open in new tab
  185. A. Bekasiewicz, P. Kurgan, and M. Kitlinski, -New approach to a fast and accurate design of mi- crowave circuits with complex topologies‖, IET Microw. Ant. Propag., vol. 6, no. 14, pp. 1616- 1622, 2012. open in new tab
  186. S. Koziel, A. Bekasiewicz, and P. Kurgan, -Rapid EM-driven design of compact RF circuits by means of nested space mapping,‖ IEEE Microw. Wireless Comp. Lett., vol. 24, no. 6, pp. 364-366, 2014. open in new tab
  187. S. Koziel, L. Leifsson, and Q.J. Zhang (Eds.), -Surrogate-based optimization‖, S. Koziel, X.S. Yang, Q.J. Zhang (Eds.), Simulation-driven design optimization and modeling for microwave en- gineering, Imperial College Press, pp. 41-80, 2012. open in new tab
  188. Sonnet em, version 14.54. Sonnet Software, North Syracuse, NY, Unites States, 2013. open in new tab
  189. P. Mondal and A. Chakrabarty, -Design of miniaturised branch-line and rat-race hybrid couplers with harmonics suppression,‖ IET Microw. Ant. Propag., vol. 3, no. 1, pp. 109-116, 2009. open in new tab
  190. J.-T. Kuo, J.-S. Wu, and Y.-C. Chou, -Miniaturized rat race coupler with suppression of spurious passband,‖ IEEE Microw. Wireless Comp. Lett., vol. 17, no. 1, pp. 46-48, 2007. open in new tab
  191. C.-H. Tseng and C.-L. Chang, -A rigorous design methodology for compact planar branch-line and rat-race couplers with asymmetrical T-structures,‖ IEEE Trans. Microw. Theory Techn., vol. 60, no. 7, pp. 2085-2092, 2012. open in new tab
  192. C.-H. Tseng and H.-J. Chen, -Compact rat-race coupler using shunt-stub-based artificial transmis- sion lines,‖ IEEE Microw. Wireless Comp. Lett., vol. 18, no. 11, pp. 734-736, 2008. open in new tab
  193. P. Kurgan and A. Bekasiewicz, -A robust design of a numerically demanding compact rat-race coupler,‖ Microw. Opt. Tech. Lett., vol. 56, no. 5, pp. 1259-1263, 2014. open in new tab
  194. P. Kurgan and M. Kitlinski, -Doubly miniaturized rat-race hybrid coupler,‖ Microw. Opt. Tech. Lett., vol. 53, no. 6, pp. 1242-1244, 2011. open in new tab
  195. J. Wang, B.-Z. Wang, Y.-X. Guo, L.C. Ong, and S. Xiao, -Compact slow-wave microstrip rat-race ring coupler,‖ Electron. Lett., vol. 43, no. 2, pp. 111-113, 2007. open in new tab
  196. S. Opozda, P. Kurgan, and M. Kitlinski, -A compact seven-section rat-race hybrid coupler incor- porating PBG cells,‖ Microw. Opt. Tech. Lett., vol. 51, no. 12, pp. 2910-2913, 2009. open in new tab
  197. W. Shao, J. He, and B.-Z. Wang, -Compact rat-race ring coupler with capacitor loading, ‖ Microw. Opt. Tech. Lett., vol. 52, no. 1, pp. 7-9, 2010. open in new tab
  198. C.-H. Tseng and C.-H. Wu, -Design of compact branch-line couplers using π-equivalent artificial transmission lines,‖ IET Microw. Ant. Propag., vol. 6, no. 9, pp. 969-974, 2012. open in new tab
  199. K.-Y. Tsai, H.-S. Yang, J.-H. Chen, and Y.-J. Chen, -A miniaturized 3 dB branch-line hybrid coupler with harmonics suppression,‖ IEEE Microw. Wireless Comp. Lett., vol. 21, no. 10, pp. 537-539, 2011. open in new tab
  200. S.-S. Liao and J.-T. Peng, -Compact planar microstrip branch-line couplers using the quasi- lumped elements approach with nonsymmetrical and symmetrical T-shaped structure,‖ IEEE Trans. Microw. Theory Techn., vol. 54, no. 9, pp. 3508-3514, 2006. open in new tab
  201. W.-L. Chen and G.-M. Wang, -Exact design of novel miniaturised fractal-shaped branch-line couplers using phase-equalising method,‖ IET Microw. Ant. Propag., vol. 2, no. 8, pp. 773-780, 2008. open in new tab
  202. L.K. Yeung, -A compact dual-band 90° coupler with coupled-line sections,‖ IEEE Trans. Microw. Theory Techn., vol. 59, no. 9, pp. 2227-2232, 2011. open in new tab
  203. J. Wang, B.-Z. Wang, Y.-X. Guo, L.C. Ong, and S. Xiao, -A compact slow-wave microstrip branch-line coupler with high performance,‖ IEEE Microw. Wireless Comp. Lett., vol. 17, no. 7, pp. 501-503, 2007. open in new tab
  204. S.-S. Liao, P.-T. Sun, N.-C. Chin, and J.-T. Peng, -A novel compact-size branch-line coupler,‖ IEEE Microw. Wireless Comp. Lett., vol. 15, no. 9, pp. 588-590, 2005.
  205. C.-W. Tang, M.-G. Chen, and C.-H. Tsai, -Miniaturization of microstrip branch-line coupler with dual transmission lines,‖ IEEE Microw. Wireless Comp. Lett., vol. 18, no. 3, pp. 185-187, 2008.
  206. H.-R. Ahn and S. Nam, -Compact microstrip 3-dB coupled-line ring and branch-line hybrids with new symmetric equivalent circuits,‖ IEEE Trans. Microw. Theory Techn., vol. 61, no. 3, pp. 1067- 1078, 2013. open in new tab
  207. K.W. Eccleston and S.H.M. Ong, -Compact planar microstripline branch-line and rat-race cou- plers,‖ IEEE Trans. Microw. Theory Techn., vol. 51, no. 10, pp. 2119-2125, 2003. open in new tab
  208. D. Pozar, Microwave Engineering, John Wiley & Sons, New York, 1998. open in new tab
  209. M. Muraguchi, T. Yukitake, and T. Naito, -Optimum Design of 3-dB Branch-Line Couplers Using Microstrip Lines,‖ IEEE Trans. Microw. Theory Tech., vol. 31, no. 8, pp. 674-678, 1983. open in new tab
  210. R. Mongia, I. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits, Artech House, 1999.
  211. S. Lee and Y. Lee, -Wideband branch-line couplers with single-section quarter-wave transformers for arbitrary coupling levels,‖ IEEE Microw. Wire. Comp. Lett., vol. 22, no. 1, pp. 19-21, 2012. open in new tab
  212. W.A. Arriola, J.Y. Lee, and I.S. Kim, -Wideband 3 dB branch line coupler based on λ/4 open circuited coupled lines,‖ IEEE Microw. Wire. Comp. Lett., vol. 21, no. 9, pp. 486-488, 2011. open in new tab
  213. Y. Wang, M. Ke, and M.J. Lancaster, ‖Micromachined millimeter-wave rectangular-coaxial branch-line coupler with enhanced bandwidth,‖ IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1655-1660, 2009.
  214. R. Levy and L. Lind, -Synthesis of symmetrical branch-guide directional couplers,‖ IEEE Trans. Microw. Theory Tech., vol. 16, no. 2, pp. 80-89, 1968. open in new tab
  215. P. Kurgan, J. Filipcewicz, and M. Kitlinski, -Development of a compact microstrip resonant cell aimed at efficient microwave component size reduction,‖ IET Microw. Ant. Propag., vol. 6, no. 12, pp. 1291-1298, 2012. open in new tab
  216. A. Bekasiewicz, P. Kurgan, and M. Kitlinski, -New approach to a fast and accurate design of mi- crowave circuits with complex topologies‖, IET Microw. Ant. Propag., vol. 6, no. 14, pp. 1616- 1622, 2012. open in new tab
  217. C.-H. Tseng and C.-H. Wu, -Design of compact branch-line couplers using π-equivalent artificial transmission lines,‖ IET Microw. Ant. Propag., vol. 6, no. 9, pp. 969-974, 2012. open in new tab
  218. S. Koziel and P. Kurgan, -Rapid design of miniaturized branch-line couplers through concurrent cell optimization and surrogate-assisted fine-tuning,‖ IET Microw. Ant. Propag., vol. 9, no. 9, pp. 957-963, 2015. open in new tab
  219. S. Koziel, A. Bekasiewicz, and P. Kurgan, -Rapid multi-objective simulation-driven design of compact microwave circuits,‖ IEEE Microw. Wireless Comp. Lett., vol. 25, no. 5, pp. 277-279, 2015. open in new tab
  220. S. Koziel, P. Kurgan, and B. Pankiewicz, -Cost-efficient design methodology for compact rat-race couplers,‖ Int. J. RF Microw. Comp. Aid. Eng., vol. 25, no. 3, pp. 236-242, 2015. open in new tab
  221. Y.-H. Chun and J.-S. Hong, -Compact wide-band branch-line hybrids,‖ IEEE Trans. Microw. Theory Tech., vol. 54, no. 2, pp. 704-709, 2006.
  222. Y.-H. Chun, and J.-S. Hong, -Design of a compact broadband branch-line hybrid,‖ IEEE MTT-S Int. Microw. Symp., pp. 997-1000, 2005.
  223. S. Koziel, L. Leifsson, and Q.J. Zhang (Eds.), -Surrogate-based optimization‖, S. Koziel, X.S. Yang, Q.J. Zhang (Eds.), Simulation-driven design optimization and modeling for microwave en- gineering, Imperial College Press, pp. 41-80, 2012. open in new tab
  224. S. Koziel and X.-S. Yang (Eds.), Computational optimization, methods and algorithms, Series: Studies in Computational Intelligence, vol. 356, Springer, 2011. open in new tab
  225. N.V. Queipo, R.T. Haftka, W. Shyy, T. Goel, R. Vaidynathan, and P.K. Tucker, -Surrogate based analysis and optimization,‖ Prog. Aerosp. Sci., vol. 41, no. 1, pp. 1-28, 2005. open in new tab
  226. M.B. Yelten, T. Zhu, S. Koziel, P.D. Franzon, and M.B. Steer, -Demystifying surrogate modeling for circuits and systems,‖ IEEE Circ. Syst. Mag., vol. 12, no. 1, pp. 45-63, 2012. open in new tab
  227. S. Koziel, -Efficient optimization of microwave circuits using shape-preserving response predic- tion,‖ IEEE MTT-S Int. Microw. Symp. Dig, Boston, MA, pp. 1569-1572, 2009. open in new tab
  228. J.W. Bandler, Q.S. Cheng, S.A. Dakroury, A.S. Mohamed, M.H. Bakr, K. Madsen, and J. Sønder- gaard, -Space mapping: the state of the art,‖ IEEE Trans. Microw. Theory Tech., vol. 52, no. 1, pp. 337-361, 2004. open in new tab
  229. C. Zhou and H.Y.D. Yang, -Design considerations of miniaturized least dispersive periodic slow- wave structures,‖ IEEE Trans. Microw. Theory Tech., vol. 56, no. 2, pp. 467-474, 2008. open in new tab
  230. S. Seki and H. Hasegawa, -Cross-tie slow-wave coplanar waveguide on semi-insulating GaAs substrates,‖ Electron. Lett., vol. 17, no. 17, pp. 940-941, 1981. open in new tab
  231. A. Bekasiewicz and P. Kurgan, -A compact microstrip rat-race coupler constituted by nonuniform transmission lines,‖ Microw. Opt. Techn. Lett., vol. 56, no. 4, pp. 970-974, 2014. open in new tab
  232. ADS, ver. 2011.10, Agilent Technologies, 1400 Fountaingrove Parkway, Santa Rosa, CA 95403- 1799, 2011. open in new tab
  233. T.G. Kolda, R.M. Lewis, and V. Torczon, -Optimization by direct search: new perspectives on some classical and modern methods,‖ SIAM Rev., vol. 45, no. 3, pp. 385-482, 2003. open in new tab
  234. J.C. Rautio, B.J. Rautio, S. Arvas, A.F. Horn, III, and J.W. Reynolds, -The effect of dielectric anisotropy and metal surface roughness,‖ Proc. Asia-Pacific Microw. Conf., pp. 1777-1780, 2010. open in new tab
  235. J.J. Yao, -Nonstandard hybrid design with branch-line structures,‖ IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 3801-3808, 2010. open in new tab
  236. P. Kurgan and A. Bekasiewicz, -A robust design of a numerically demanding compact rat-race coupler,‖ Microw. Opt. Techn. Lett., vol. 56, pp. 1259-1263, 2014. open in new tab
  237. A. Bekasiewicz and P. Kurgan, -A compact microstrip rat-race coupler constituted by nonuniform transmission lines,‖ Microw. Opt. Techn. Lett., vol. 56, pp. 970-974, 2014. open in new tab
  238. J. Nocedal and S.J. Wright, Numerical Optimization, 2nd edition, Springer, New York, 2006. open in new tab
  239. A.R. Conn, K. Scheinberg, and L.N. Vicente, Introduction to Derivative-Free Optimization, MPS- SIAM Series on Optimization, MPS-SIAM, 2009. open in new tab
  240. C.-H. Tseng and H.-J. Chen, -Compact Rat-Race Coupler Using Shunt-Stub-Based Artificial Transmission Lines,‖ IEEE Microw. Wireless Comp. Lett.., vol. 18, no. 11, pp. 734-736, 2008. open in new tab
  241. S. Taravati, -Miniaturized wide-band rat-race coupler,‖ Int. J. RF Microw. Comp. Aid. Eng., vol. 23, no. 6, pp. 675-681, 2013. open in new tab
  242. M. Nosrati, M. Daneshmand, and B.S. Virdee, -Novel compact dual-narrow/wideband branch-line couplers using T-Shaped stepped-impedance-stub lines,‖ Int. J. RF Microw. Comp. Aid. Eng., vol. 21, no. 6, pp. 642-649, 2011. open in new tab
  243. G. Monti and L. Tarricone, -Dual-band artificial transmission lines branch-line coupler,‖ Int. J. RF Microw. Comp. Aid. Eng., vol. 18, no.1, pp. 53-62, 2008. open in new tab
  244. Y. Kuwahara, -Multiobjective optimization design of Yagi-Uda antenna,‖ IEEE Trans. Ant. Prop., vol. 53, no. 6, pp. 1984-1992, 2005. open in new tab
  245. S.H. Yeung and K.F. Man, -Multiobjective Optimization,‖ IEEE Microw. Mag., vol. 12, no. 6, pp. 120-133, 2011. open in new tab
  246. S. Koziel, X.-S. Yang, and Q.-J. Zhang (Eds.), Simulation-Driven Design Optimization and Mod- eling for Microwave Engineering, Imperial College Press, 2013. open in new tab
  247. N.V. Queipo, R.T. Haftka, W. Shyy, T. Goel, R. Vaidynathan, and P.K. Tucker, -Surrogate based analysis and optimization,‖ Prog. Aerospace Sci., vol. 41, no. 1, pp. 1-28, 2005. open in new tab
  248. J.W. Bandler, Q.S. Cheng, S.A. Dakroury, A.S. Mohamed, M.H. Bakr, K. Madsen, and J. Sonder- gaard, -Space mapping: the state of the art,‖ IEEE Trans. Microw. Theory Tech., vol. 52, no. 1, pp. 337-361, 2004. open in new tab
  249. S. Koziel and L. Leifsson (Eds.), Surrogate-based modeling and optimization: applications in engineering, Springer, 2013. open in new tab
  250. S. Koziel, A. Bekasiewicz, and P. Kurgan, -Rapid EM-driven design of compact RF circuits by means of nested space mapping,‖ IEEE Microw. Wireless Comp. Lett,, vol. 24, no. 6, pp. 364-366, 2014. open in new tab
  251. S. Koziel and P. Kurgan, -Low-cost optimization of compact branch-line couplers and its applica- tion to miniaturized Butler matrix design,‖ European Microw. Conf., pp. 227-230, 2014. open in new tab
  252. C.-W. Wang, T.-G. Ma, and C.-F. Yang, -A new planar artificial transmission line and its applica- tions to a miniaturized Butler matrix‖, IEEE Trans. Microw. Theory Tech., vol. 55, no. 12, pp. 2792-2801, 2007. open in new tab
  253. C.-H. Tseng and C.-L. Chang, -A rigorous design methodology for compact planar branch-line and rat-race couplers with asymmetrical T-structures‖, IEEE Trans. Microw. Theory Tech., vol. 60, no. 7, pp. 2085-2092, 2012. open in new tab
  254. N. Jin and Y. Rahmat-Samii, -Advances in particle swarm optimization for antenna designs: real- number, binary, single-objective and multiobjective implementations,‖ IEEE Tran. Antennas Propag., vol. 55, no. 3, pp. 556-567, 2007. open in new tab
  255. S. Koziel and S. Ogurtsov, -Computational-budget-driven automated microwave design optimiza- tion using variable-fidelity electromagnetic simulations,‖ Int. J. RF Microw. Com. Aid. Eng., vol. 23, no. 3, pp. 349-356, 2013. open in new tab
  256. S. Koziel and S. Ogurtsov, -Robust multi-fidelity simulation-driven design optimization of microwave structures,‖ IEEE MTT-S Int. Microw. Symp. Dig., pp. 201-204, 2010. open in new tab
  257. S. Koziel, J.W. Bandler, and K. Madsen, -Quality assessment of coarse models and surrogates for space mapping optimization,‖ Opt. Eng., vol. 9, no. 4, pp. 375-391, 2008. open in new tab
  258. S. Koziel, Q.S. Cheng, and J.W. Bandler, -Space mapping,‖ IEEE Microw. Mag., vol. 9, no. 6, pp. 105-122, 2008. open in new tab
  259. T.G. Kolda, R.M. Lewis, and V. Torczon, -Optimization by direct search: new perspectives on some classical and modern methods,‖ SIAM Review, vol. 45, no. 3, pp. 385-482, 2003. open in new tab
  260. S. Koziel, -Computationally efficient multi-fidelity multi-grid design optimization of microwave structures,‖ Appl. Comp. Electromag. Soc. J., vol. 25, no. 7, pp. 578-586, 2010.
  261. S. Koziel and S. Ogurtsov, -Microwave design optimization using local response surface approx- imations and variable-fidelity electromagnetic models,‖ Int. J. RF Microwave CAE, vol. 23, no. 3, pp. 349-356, 2013. open in new tab
  262. S. Koziel, P. Kurgan, and B. Pankiewicz, -Cost-efficient design methodology for compact rat-race couplers,‖ Int. J. RF Microw. Comp. Aid. Eng., vol. 25, no. 3, pp. 236-242, 2015. open in new tab
  263. P. Kurgan and M. Kitlinski, -Doubly miniaturized rat-race hybrid coupler‖ Microw. Opt. Technol. Lett., vol. 53, pp. 1242-1244, 2011. open in new tab
  264. P. Kurgan, J. Filipcewicz, and M. Kitlinski, -Development of a compact microstrip resonant cell aimed at efficient microwave component size reduction,‖ IET Microw. Ant. Propag., vol. 6, no. 12, pp. 1291-1298, 2012. open in new tab
  265. CST Microwave Studio, ver. 2013, CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Ger- many, 2013. open in new tab
  266. Agilent ADS, ver. 2011.10, Agilent Technologies, 1400 Fountaingrove Parkway, Santa Rosa, CA 95403-1799, 2011.
  267. S.-Y., Yuan, M.-S. Shiau, S.-S. Liao, P.-T. Sun, and C.-T. Ho, -An extremely compact dual-band branch-line coupler,‖ Microw. Opt. Technol. Lett., vol. 49, no. 12, pp. 3011-3014, 2007. open in new tab
  268. A. Bekasiewicz, P. Kurgan, and M. Kitlinski, -A new approach to a fast and accurate design of microwave circuits with complex topologies,-IET Microw. Ant. Prop., vol. 6, no. 14, pp. 1616- 1622, 2012. open in new tab
  269. S. Koziel, A. Bekasiewicz, and P. Kurgan, -Size reduction of microwave couplers by EM-driven optimization,‖ IEEE MTT-S Int. Microw. Symp., pp. 1-3, 2015. References [1] open in new tab
  270. S. H. Yeung and K. F. Man, -Multiobjective Optimization,‖ IEEE Microw. Mag., vol. 12, no. 6, pp. 120-133, 2011. open in new tab
  271. S. Koziel, P. Kurgan, and B. Pankiewicz, -Cost-efficient design methodology for compact rat-race couplers,‖ Int. J. RF Microw. Comp. Aid. Eng., vol. 25, no. 3, pp. 236-242, 2015. open in new tab
  272. S. Koziel, A. Bekasiewicz, and P. Kurgan, -Rapid Multi-Objective Simulation-Driven Design of Compact Microwave Circuits,‖ IEEE Microw. Wireless Comp. Lett., vol. 25, no. 5, pp. 277-279, 2015. open in new tab
  273. C.-H. Tseng and H.-J. Chen, -Compact Rat-Race Coupler Using Shunt-Stub-Based Artificial Transmis- sion Lines‖, IEEE Microw. Wireless Comp. Lett., vol. 18, no. 11, pp. 734-736, 2008. open in new tab
  274. S. Koziel, A. Bekasiewicz, P. Kurgan, and J.W. Bandler, -Rapid multi-objective design optimiza- tion of compact microwave couplers by means of physics-based surrogates,‖ IET Microw. Ant. Propag., vol. 10, no. 5, pp. 479-786, 2016. open in new tab
  275. H. Ghali and T. A. Moselhy, -Miniaturized fractal rat-race, branch-line, and coupled-line hybrids‖, IEEE Trans. Microw. Theory Techn., vol. 52, no. 10, pp. 2513-2520, 2004. open in new tab
  276. P. Kurgan and M. Kitlinski, -Doubly miniaturized rat-race hybrid coupler,‖ Microw. Opt. Techn. Lett., vol. 53, no. 6, pp. 1242-1244, 2011. open in new tab
  277. S. Koziel and X.-S. Yang (Eds.), -Computational Optimization, Methods and Algorithms,‖ Springer, 2011. open in new tab
  278. S. Koziel and P. Kurgan, -Rapid design of miniaturised branch-line couplers through concurrent cell optimisation and surrogate-assisted fine-tuning,‖ IET Microw. Ant. Propag., vol. 9, no. 9, pp. 957-963, 2015. open in new tab
  279. S.-S. Liao, P.-T. Sun, N.-C. Chin, and J.-T. Peng, -A novel compact-size branch-line coupler,‖ IEEE Microw. Wireless Comp. Lett., vol. 15, no. 9, pp. 588-590, 2005.
  280. S. Koziel and. L. Leifsson (Eds.), Surrogate-based modeling and optimization: applications in engineering, Springer, 2013. open in new tab
  281. J.W. Bandler, Q.S. Cheng, S.A. Dakroury, A.S. Mohamed, M.H. Bakr, K. Madsen, and J. Sonder- gaard, -Space mapping: the state of the art,‖ IEEE Trans. Microw. Theory Techn., vol. 52, no. 1, pp. 337-361, 2004. open in new tab
  282. S. Koziel, A. Bekasiewicz, and P. Kurgan, -Rapid EM-driven design of compact RF circuits by means of nested space mapping,‖ IEEE Microw. Wireless Comp. Lett., vol. 24, no. 6, pp. 364-366, 2014. open in new tab
  283. S. Koziel, L. Leifsson, and X.S. Yang (Eds.), Solving computationally expensive engineering problems: methods and applications, Springer, 2014. open in new tab
  284. P. Kurgan and M. Kitlinski, -Development of a compact microstrip resonant cell aimed at efficient microwave component size reduction,‖ IET Microw. Ant. Propag., vol. 6, no. 12, pp. 1291-1298, 2012. open in new tab
  285. K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons, 2001. open in new tab
  286. R. Mongia, I. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits, Artech House, 1999.
  287. S. Opozda, P. Kurgan, and M. Kitlinski, -A compact seven-section rat-race hybrid coupler incor- porating PBG cells,‖ Microw. Opt. Techn. Lett., vol. 51, no. 12, pp. 2910-2913, 2009. open in new tab
  288. A. Bekasiewicz and P. Kurgan, -A compact microstrip rat-race coupler constituted by nonuniform transmission lines,‖ Microw. Opt. Techn. Lett., vol. 56, no. 4, pp. 970-974, 2014. open in new tab
  289. P. Kurgan and A. Bekasiewicz, -A robust design of a numerically demanding compact rat-race coupler,‖ Microw. Opt. Techn. Lett., vol. 56, no. 6, pp. 1259-1263, 2014. open in new tab
  290. CST Microwave Studio, ver. 2013, CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Ger- many, 2013. open in new tab
  291. Agilent ADS, Agilent Technologies, 1400 Fountaingrove Parkway, Santa Rosa, CA 95403-1799, 2011.
  292. S. Koziel and S. Ogurtsov, -Multi-objective design of antennas using variable-fidelity simulations and surrogate models,‖ IEEE Trans. Ant. Propag., vol. 61, no. 12, pp. 5931-5939, 2013. open in new tab
  293. S. Koziel, Q.S. Cheng, and J.W. Bandler, -Space mapping,‖ IEEE Microw. Mag., vol. 9, no. 6, pp. 105-122, 2008. open in new tab
Verified by:
Gdańsk University of Technology

seen 115 times

Recommended for you

Meta Tags