High-temperature oxidation of the Crofer 22 H ferritic steel with Mn1.45Co1.45Fe0.1O4 and Mn1.5Co1.5O4 spinel coatings under thermal cycling conditions and its properties
Abstract
The aim of the presented study was to deposit protective-conducting Mn1.45Co1.45Fe0.1O4 and Mn1.5Co1.5O4 spinel coatings on the Crofer 22 H ferritic steel by means of electrophoresis and to evaluate their physicochemical properties after high-temperature oxidation under thermal cycling conditions. When the Crofer 22 H steel – whether uncoated or coated with the two spinels – was oxidized in 48-h cycles involving a temperature of either 750 or 800 °C, its oxidation kinetics approximately obeyed the parabolic rate law. The oxidation rate observed for uncoated steel was higher than that for the studied coating/steel systems. The Fe-doped spinel coating material improved the oxidation resistance of steel to a higher degree than the undoped spinel coating. The obtained bulk spinels exhibited a regular phase composition and high electrical conductivity, while the Mn1.45Co1.45Fe0.1O4 and Mn1.5Co1.5O4 coatings were dual-phase, compact, and exhibited good adhesion to the metallic substrate. The area-specific resistance values measured for the steel/coating systems indicate that the coatings significantly improve the electrical properties of the studied ferritic steel, especially at 800 °C. The conducted research confirmed the suitability of the Mn1.45Co1.45Fe0.1O4 and Mn1.5Co1.5O4 spinels as coatings on the Crofer 22 H ferritic steel to be applied in the production of interconnects used in intermediate-temperature SOFCs.
Citations
-
4 6
CrossRef
-
0
Web of Science
-
5 0
Scopus
Authors (7)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
MATERIALS CHEMISTRY AND PHYSICS
no. 225,
pages 227 - 238,
ISSN: 0254-0584 - Language:
- English
- Publication year:
- 2019
- Bibliographic description:
- Bednarz M., Molin S., Bobruk M., Stygar M., Długoń E., Sitarz M., Brylewski T.: High-temperature oxidation of the Crofer 22 H ferritic steel with Mn1.45Co1.45Fe0.1O4 and Mn1.5Co1.5O4 spinel coatings under thermal cycling conditions and its properties// MATERIALS CHEMISTRY AND PHYSICS. -Vol. 225, (2019), s.227-238
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.matchemphys.2018.12.090
- Verified by:
- Gdańsk University of Technology
seen 162 times
Recommended for you
Experimental review of the performances of protective coatings for interconnects in solid oxide fuel cells
- M. J. Reddy,
- B. Kamecki,
- B. Talic
- + 10 authors
Influence of Gd deposition on the oxidation behavior and electrical properties of a layered system consisting of Crofer 22 APU and MnCo2O4 spinel
- T. Brylewski,
- S. Molin,
- M. Marczyński
- + 4 authors