Increased Certification of Semi-device Independent Random Numbers using Many Inputs and More Postprocessing
Abstract
Quantum communication with systems of dimension larger than two provides advantages in information processing tasks. Examples include higher rates of key distribution and random number generation. The main disadvantage of using such multi-dimensional quantum systems is the increased complexity of the experimental setup. Here, we analyze a not-so-obvious problem: the relation between randomness certification and computational requirements of the postprocessing of experimental data. In particular, we consider semi-device independent randomness certification from an experiment using a four dimensional quantum system to violate the classical bound of a random access code. Using state-of-the-art techniques, a smaller quantum violation requires more computational power to demonstrate randomness, which at some point becomes impossible with today's computers although the randomness is (probably) still there. We show that by dedicating more input settings of the experiment to randomness certification, then by more computational postprocessing of the experimental data which corresponds to a quantum violation, one may increase the amount of certified randomness. Furthermore, we introduce a method that significantly lowers the computational complexity of randomness certification. Our results show how more randomness can be generated without altering the hardware and indicate a path for future semi-device independent protocols to follow.
Citations
-
1 3
CrossRef
-
0
Web of Science
-
1 3
Scopus
Authors (6)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1088/1367-2630/18/6/065004
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
NEW JOURNAL OF PHYSICS
no. 18,
pages 1 - 8,
ISSN: 1367-2630 - Language:
- English
- Publication year:
- 2016
- Bibliographic description:
- Mironowicz P., Tavakoli A., Hameedi A., Marques B., Pawłowski M., Bourennane M.: Increased Certification of Semi-device Independent Random Numbers using Many Inputs and More Postprocessing// NEW JOURNAL OF PHYSICS. -Vol. 18, (2016), s.1-8
- DOI:
- Digital Object Identifier (open in new tab) 10.1088/1367-2630/18/6/065004
- Verified by:
- Gdańsk University of Technology
seen 138 times
Recommended for you
Experimental certification of more than one bit of quantum randomness in the two inputs and two outputs scenario
- A. J. Seguinard,
- A. Piveteau,
- P. Mironowicz
- + 1 authors
Device-independent quantum key distribution based on measurement inputs
- R. Rahaman,
- M. Parker,
- P. A. Mironowicz
- + 1 authors
Properties of dimension witnesses and their semidefinite programming relaxations
- P. A. Mironowicz,
- H. Li,
- M. Pawłowski