Integration of the sulfate reduction and anammox processes for enhancing sustainable nitrogen removal in granular sludge reactors
Abstract
The Anammox and Sulfate Reduction Ammonium Oxidation processes were compared in two granular sequencing batch reactors operated for 160 days under anammox conditions. It was hypothesized that increasing the concentration of SO42− may positively influence the rate of N removal under anaerobic conditions and it was tested whether SO42− reduction and anammox occur independently or are related to each other. The cooperation of N-S cycles by increasing the concentration of influent SO42− to 952 mg S/L in the second reactor, a higher ammonium utilization rate and sulfate utilization rate was achieved compared to the first reactor, i.e., 2.1-fold and 15-fold, respectively. Nitrosomonas played the dominant role in the N metabolism, while Thauera – in the S metabolism. This study highlights the benefits of linking the N-S cycles as an effective approach for the treatment of NH4+ and SO42− – rich wastewater, including lower substrate removal cost and reduced energy consumption.
Citations
-
2 0
CrossRef
-
0
Web of Science
-
2 2
Scopus
Authors (8)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
BIORESOURCE TECHNOLOGY
no. 383,
ISSN: 0960-8524 - Language:
- English
- Publication year:
- 2023
- Bibliographic description:
- Derwis D., Majtacz J., Kowal P., Al-Hazmi H., Zhai J., Ciesielski S., Piechota G., Mąkinia J.: Integration of the sulfate reduction and anammox processes for enhancing sustainable nitrogen removal in granular sludge reactors// BIORESOURCE TECHNOLOGY -Vol. 383, (2023), s.129264-
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.biortech.2023.129264
- Sources of funding:
- Verified by:
- Gdańsk University of Technology
seen 92 times