Interactions between hydration spheres of two different solutes in solution: The least squares fitting with constraints as a tool to determine water properties in ternary systems - Publication - Bridge of Knowledge

Search

Interactions between hydration spheres of two different solutes in solution: The least squares fitting with constraints as a tool to determine water properties in ternary systems

Abstract

Biological systems are complex and the problem of their description lies in mutual interactions between their components. This paper is focused on model experiment-based studies which can reduce these difficulties. The ternary aqueous N-methylacetamide (NMA)–Na2HPO4 system has been studied by means of the FTIR spectroscopy. A novel difference spectra method aimed to extract the spectral contribution of water affected simultaneously by two solutes is proposed. The key improvement is the additional least squares curve fitting procedure with carefully selected constraints which allow obtaining information on the composition of water affected in complex solutions. The fitting parameters are optimized with the Monte Carlo method and the human influence on parameter selection is minimized. The simple method allows determining individual contributions originating in hydration of multiple solution components. FTIR spectra of water in the NMA–Na2HPO4 system gave an insight into the interactions and susceptibility for interactions between solvent and co-solutes or hydrated co-solutes.

Citations

  • 5

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Cite as

Full text

download paper
downloaded 19 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
JOURNAL OF MOLECULAR LIQUIDS no. 310,
ISSN: 0167-7322
Language:
English
Publication year:
2020
Bibliographic description:
Panuszko A., Stangret J., Nowosielski B., Bruździak P.: Interactions between hydration spheres of two different solutes in solution: The least squares fitting with constraints as a tool to determine water properties in ternary systems// JOURNAL OF MOLECULAR LIQUIDS -Vol. 310, (2020), s.113181-
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.molliq.2020.113181
Bibliography: test
  1. A. Chand, S. Chowdhuri, A comparative study of hydrogen bonding structure and dynamics in aqueous urea solution of amides with varying hydrophobicity: effect of addition of trimethylamine N-oxide (TMAO), J. Mol. Liq. 242 (2017) 70-81. open in new tab
  2. A. Chand, S. Chowdhuri, Effects of dimethyl sulfoxide on the hydrogen bonding structure and dynamics of aqueous N-methylacetamide solution, J. Chem. Sci. 128 (2016) 991-1001. open in new tab
  3. A. Chand, P. Chettiyankandy, S.K. Pattanayak, S. Chowdhuri, Effects of trimethylamine-N-oxide (TMAO) on aqueous N-methylacetamide solution: a com- parison of different force fields of TMAO, J. Mol. Liq. 225 (2017) 926-935. open in new tab
  4. I. Yu, M. Nagaoka, Slowdown of water diffusion around protein in aqueous solution with ectoine, Chem. Phys. Lett. 388 (2004) 316-321. open in new tab
  5. S. Paul, S. Paul, Exploring the counteracting mechanism of trehalose on urea con- ferred protein denaturation: a molecular dynamics simulation study, J. Phys. Chem. B 119 (2015) 9820-9834. open in new tab
  6. E.A. Oprzeska-Zingrebe, M. Kohagen, J. Kästner, J. Smiatek, Unfolding of DNA by co- solutes: insights from Kirkwood-Buff integrals and transfer free energies, Eur. Phys. J. Special Topics 227 (2019) 1665-1679. open in new tab
  7. J. Hunger, N. Ottosson, K. Mazur, M. Bonn, H.J. Bakker, Water-mediated interactions between trimethylamine-N-oxide and urea, Phys. Chem. Chem. Phys. 17 (2015) 298-306. open in new tab
  8. K.I. Oh, C.R. Baiz, Crowding stabilizes DMSO-water hydrogen-bonding interactions, J. Phys. Chem. B 122 (2018) 5984-5990. open in new tab
  9. V.P. Korolev, O.A. Antonova, N.L. Smirnova, Thermodynamic characteristics, struc- ture, and interactions of L-proline in aqueous solutions of alcohols and urea, J. Struct. Chem. 55 (2014) 353-359. open in new tab
  10. C. Malardier-Jugroot, D.T. Bowron, A.K. Soper, M.E. Johnson, T. Head-Gordon, Struc- ture and water dynamics of aqueous peptide solutions in the presence of co- solvents, Phys. Chem. Chem. Phys. 12 (2010) 382-392. open in new tab
  11. D. Russo, The impact of kosmotropes and chaotropes on bulk and hydration shell water dynamics in a model peptide solution, Chem. Phys. 345 (2008) 200-211 (Neutrons in Biology). open in new tab
  12. G. Nandini, D.N. Sathyanarayana, Ab initio studies on geometry and vibrational spectra of N-methyl formamide and N-methylacetamide, J. Mol. Struct. THEOCHEM 579 (2002) 1-9. open in new tab
  13. A. Radzicka, L. Pedersen, R. Wolfenden, Influences of solvent water on protein fold- ing: free energies of solvation of cis and trans peptides are nearly identical, Bio- chemistry 27 (1988) 4538-4541. open in new tab
  14. H. Guo, M. Karplus, Ab initio studies of hydrogen bonding of N-methylacetamide: structure, cooperativity, and internal rotational barriers, J. Phys. Chem. 96 (1992) 7273-7287. open in new tab
  15. T.W. Whitfield, G.J. Martyna, S. Allison, S.P. Bates, H. Vass, J. Crain, Structure and hy- drogen bonding in neat N-methylacetamide: classical molecular dynamics and Raman spectroscopy studies of a liquid of peptidic fragments, J. Phys. Chem. B 110 (2006) 3624-3637. open in new tab
  16. U. Adhikari, S. Scheiner, Preferred configurations of peptide-peptide interactions, J. Phys. Chem. A 117 (2013) 489-496. open in new tab
  17. M. Albrecht, C.A. Rice, M.A. Suhm, Elementary peptide motifs in the gas phase: FTIR aggregation study of formamide, acetamide, N-methylformamide, and N- methylacetamide, J. Phys. Chem. A 112 (2008) 7530-7542. open in new tab
  18. R. Vargas, J. Garza, R.A. Friesner, H. Stern, B.P. Hay, D.A. Dixon, Strength of the N − H⋯O = C and C-H⋯O=C bonds in formamide and N-methylacetamide dimers, J. Phys. Chem. A 105 (2001) 4963-4968. open in new tab
  19. M. Albertí, N. Faginas Lago, A. Laganà, F. Pirani, A portable intermolecular potential for molecular dynamics studies of NMA-NMA and NMA-H2O aggregates, Phys. Chem. Chem. Phys. 13 (2011) 8422-8432. open in new tab
  20. X. Jiang, C. Wang, Evaluation of the individual hydrogen bonding energies in N- methylacetamide chains, SCIENCE CHINA Chem. 53 (2010) 1754-1761. open in new tab
  21. Y. Zhou, G. Deng, Y.Z. Zheng, J. Xu, H. Ashraf, Z.W. Yu, Evidences for cooperative resonance-assisted hydrogen bonds in protein secondary structure analogs, Sci. Rep. 6 (2016) 36932. open in new tab
  22. T. Forsting, H.C. Gottschalk, B. Hartwig, M. Mons, M.A. Suhm, Correcting the record: the dimers and trimers of: trans-N-methylacetamide, Phys. Chem. Chem. Phys. 19 (2017) 10727-10737. open in new tab
  23. H. Torii, T. Tatsumi, T. Kanazawa, M. Tasumi, Effects of intermolecular hydrogen- bonding interactions on the amide I mode of N-methylacetamide: matrix-isolation infrared studies and ab initio molecular orbital calculations, J. Phys. Chem. B 102 (1998) 309-314. open in new tab
  24. N. Faginas-Lago, A. Lombardi, M. Albertí, Aqueous N-methylacetamide: new analytic potentials and a molecular dynamics study, J. Mol. Liq. 224 (2016) 792-800. open in new tab
  25. A. Panuszko, M.G. Nowak, P. Bruździak, M. Stasiulewicz, J. Stangret, Amides as models to study the hydration of proteins and peptides spectroscopic and theoret- ical approach on hydration in various temperatures, J. Mol. Liq. 278 (2019) 706-715. open in new tab
  26. N.S. Kang, Y.K. Kang, Assessment of CCSD(T), MP2, and DFT methods for the calcu- lations of structures and interaction energies of the peptide backbone with water molecules, Chem. Phys. Lett. 687 (2017) 23-30. open in new tab
  27. M. Di Gioacchino, F. Bruni, M.A. Ricci, N-methylacetamide aqueous solutions: a neu- tron diffraction study, J. Phys. Chem. B 123 (2019) 1808-1814. open in new tab
  28. V.K. Yadav, A. Chandra, First-principles simulation study of vibrational spectral dif- fusion and hydrogen bond fluctuations in aqueous solution of N-methylacetamide, J. Phys. Chem. B 119 (2015) 9858-9867. open in new tab
  29. L.O. Paulson, D.T. Anderson, Infrared spectroscopy of the amide I mode of N- methylacetamide in solid hydrogen at 2-4 K, J. Phys. Chem. B 115 (2011) 13659-13667. open in new tab
  30. A. Panuszko, E. Gojło, J. Zielkiewicz, M. Śmiechowski, J. Krakowiak, J. Stangret, Hy- dration of simple amides. FTIR spectra of HDO and theoretical studies, J. Phys. Chem. B 112 (2008) 2483-2493. open in new tab
  31. X. Xiao, Y. Tan, L. Zhu, Y. Guo, Z. Wen, M. Li, X. Pu, A. Tian, Effects of the position and manner of hydration on the stability of solvated N-methylacetamides and the strength of binding between N-methylacetamide and water clusters: a computa- tional study, J. Mol. Model. 18 (2011) 1389-1399. open in new tab
  32. A. Bastida, M.A. Soler, J. Zúñiga, A. Requena, A. Kalstein, S. Fernández-Alberti, Hybrid quantum/classical simulations of the vibrational relaxation of the amide I mode of N-methylacetamide in D2O solution, J. Phys. Chem. B 116 (2012) 2969-2980. open in new tab
  33. P.A. Cazade, F. Hédin, Z.H. Xu, M. Meuwly, Vibrational relaxation and energy migra- tion of N-methylacetamide in water: the role of nonbonded interactions, J. Phys. Chem. B 119 (2015) 3112-3122. open in new tab
  34. P.A. Cazade, T. Bereau, M. Meuwly, Computational two-dimensional infrared spec- troscopy without maps: N-methylacetamide in water, J. Phys. Chem. B 118 (2014) 8135-8147. open in new tab
  35. B. Lin, P.E. Lopes, B. Roux, A.D. Mackerell, Kirkwood-Buff analysis of aqueous N- methylacetamide and acetamide solutions modeled by the CHARMM additive and Drude polarizable force fields, J. Chem. Phys. 139 (2013). open in new tab
  36. E. Kaczkowska, J. Wawer, M. Tyczyńska, M. Jóźwiak, J. Krakowiak, The hydration of selected biologically relevant molecules the temperature effect on apparent molar volume and compression, J. Mol. Liq. 274 (2019) 345-352. open in new tab
  37. P.P. Patil, V.R. Shaikh, P.D. Patil, A.U. Borse, K.J. Patil, Volumetric, isentropic com- pressibility and viscosity coefficient studies of binary solutions involving amides as a solute in aqueous and CCl 4 solvent systems at 298.15 K, J. Mol. Liq. 264 (2018) 223-232. open in new tab
  38. X.M. Cao, Y. Tian, Z.Y. Wang, Y.W. Liu, C.X. Wang, Effects of protein and phosphate buffer concentrations on thermal denaturation of lysozyme analyzed by isoconversional method, Bioengineered 7 (2016) 235-240. open in new tab
  39. A. Blumlein, J.J. McManus, Reversible and non-reversible thermal denaturation of ly- sozyme with varying pH at low ionic strength, Biochim. Biophys. Acta, Proteins Pro- teomics 1834 (2013) 2064-2070. open in new tab
  40. F. Cugia, M. Monduzzi, B.W. Ninham, A. Salis, Interplay of ion specificity, pH and buffers: insights from electrophoretic mobility and pH measurements of lysozyme solutions, RSC Adv. 3 (2013) 5882-5888. open in new tab
  41. P. Lo Nostro, N. Peruzzi, M. Severi, B.W. Ninham, P. Baglioni, Asymmetric partitioning of anions in lysozyme dispersions, J. Am. Chem. Soc. 132 (2010) 6571-6577. open in new tab
  42. M.A. Metrick, J.E. Temple, G. Macdonald, The effects of buffers and pH on the ther- mal stability, unfolding and substrate binding of RecA, Biophys. Chem. 184 (2013) 29-36. open in new tab
  43. H.I. Okur, J. Hladílková, K.B. Rembert, Y. Cho, J. Heyda, J. Dzubiella, P.S. Cremer, P. Jungwirth, Beyond the Hofmeister series: ion-specific effects on proteins and their biological functions, J. Phys. Chem. B 121 (2017) 1997-2014. open in new tab
  44. K.D. Collins, G.W. Neilson, J.E. Enderby, Ions in water: characterizing the forces that control chemical processes and biological structure, Biophys. Chem. 128 (2007) 95-104. open in new tab
  45. X. Tadeo, B. López-Méndez, D. Castaño, T. Trigueros, O. Millet, Protein stabilization and the Hofmeister effect: the role of hydrophobic solvation, Biophys. J. 97 (2009) 2595-2603. open in new tab
  46. N. Vlachy, B. Jagoda-Cwiklik, R. Vácha, D. Touraud, P. Jungwirth, W. Kunz, Hofmeister series and specific interactions of charged headgroups with aqueous ions, Adv. Colloid Interf. Sci. 146 (2009) 42-47. open in new tab
  47. A. Salis, M. Monduzzi, Not only pH. Specific buffer effects in biological systems, Curr. Opin. Colloid Interface Sci. 23 (2016) 1-9. open in new tab
  48. G. Carrea, R. Bovara, P. Pasta, P. Cremonesi, The effect of Hofmeister anions and pro- tein concentration on the activity and stability of some immobilized NADdependent dehydrogenases, Biotechnol. Bioeng. 24 (1982) 1-7. open in new tab
  49. K.A. Biernacki, E. Kaczkowska, P. Bruździak, Aqueous solutions of NMA, Na 2 HPO 4 , and NaH 2 PO 4 as models for interaction studies in phosphate-protein systems, J. Mol. Liq. 265 (2018) 361-371. open in new tab
  50. M. Śmiechowski, E. Gojto, J. Stangret, Systematic study of hydration patterns of phosphoric(V) acid and its mono-, di-, and tripotassium salts in aqueous solution, J. Phys. Chem. B 113 (2009) 7650-7661. open in new tab
  51. M. Śmiechowski, J. Stangret, Vibrational spectroscopy of semiheavy water (HDO) as a probe of solute hydration, Pure Appl. Chem. 82 (2010) 1869-1887. open in new tab
  52. J. Stangret, Solute-affected vibrational spectra of water in Ca(ClO 4 ) 2 aqueous solu- tions, Spectrosc. Lett. 21 (1988) 369-381. open in new tab
  53. P. Bruździak, P.W. Rakowska, J. Stangret, Chemometric method of spectra analysis leading to isolation of lysozyme and CtDNA spectra affected by osmolytes, Appl. Spectrosc. 66 (2012) 1302-1310. open in new tab
  54. B. Berglund, J. Lindgren, J. Tegenfeldt, O-H and O-D stretching vibrations in isotopi- cally dilute HDO molecules in some solid hydrates, J. Mol. Struct. 43 (1978) 169-177. open in new tab
  55. S. Bratos, J.-C. Leicknam, S. Pommeret, Relation between the OH stretching fre- quency and the OO distance in time-resolved infrared spectroscopy of hydrogen bonding, Chem. Phys. 359 (2009) 53-57. open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 132 times

Recommended for you

Meta Tags