Low energy differential elastic electron scattering from acetonitrile (CH3CN) - Publication - Bridge of Knowledge

Search

Low energy differential elastic electron scattering from acetonitrile (CH3CN)

Abstract

Measurements of elastic differential cross sections for electron scattering from acetonitrile (CH3CN) have been performed utilizing a crossed electron-molecular beam experiment and with the relative flow method, for the incident electron energy range of 0.7 eV–30 eV and the scattering angle range of 10◦–130◦. These differential cross sections have been used to calculate the elastic integral and momentum- transfer cross sections, revealing a π* resonance located around 3 eV. The elastic differential cross sections are compared with available theoretical models using the R-matrix method and the Schwinger multichannel method.

Citations

  • 4

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Cite as

Full text

download paper
downloaded 38 times
Publication version
Accepted or Published Version
License
Copyright (AIP Publishing)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
JOURNAL OF CHEMICAL PHYSICS no. 149, pages 1 - 5,
ISSN: 0021-9606
Language:
English
Publication year:
2018
Bibliographic description:
Zawadzki M., Khakoo M.: Low energy differential elastic electron scattering from acetonitrile (CH3CN)// JOURNAL OF CHEMICAL PHYSICS. -Vol. 149, nr. 124304 (2018), s.1-5
DOI:
Digital Object Identifier (open in new tab) 10.1063/1.5049810
Bibliography: test
  1. I. I. Fabrikant, S. Eden, N. J. Mason, and J. Fedor, Adv. At., Mol., Opt. Phys. 66, 545 (2017). open in new tab
  2. I. Baccarelli, I. Bald, F. A. Gianturco, E. Illenberger, and J. Kopyra, Phys. Rep. 508, 1 (2011). open in new tab
  3. R. K. Janev, Atomic and Molecular Processes in Fusion Edge Plasmas (Plenum, New York, 1995). open in new tab
  4. G. Karwasz and K. Fedus, Fusion Sci. Technol. 63, 338 (2013). open in new tab
  5. J. Lengyel, M. Ončák, J. Fedor, J. Kočišek, A. Pysanenko, M. K. Beyer, and M. Fárnik, Phys. Chem. Chem. Phys. 19, 11753 (2017). open in new tab
  6. J. Kočišek, R. Janečková, and J. Fedor, J. Chem. Phys. 148, 074303 (2018). open in new tab
  7. M. J. Frisch et al., gaussian 09, Revision E.01, Gaussian, Inc., Wallingford, CT, 2009.
  8. R. J. Habing and G. H. Macdonald, Astron. Astrophys. 252, 705 (1991).
  9. A. Coustenis, B. Schmitt, R. K. Khanna, and F. Trotta, Planet. Space Sci. 47, 1305 (1999). open in new tab
  10. C. Watson, E. Churchwell, V. Pankonin, and J. H. Bieging, Astrophys. J. 577, 260 (2002). open in new tab
  11. R. B. Loren and L. G. Mundy, Astrophys. J. 286, 232 (1984). open in new tab
  12. P. Hofner, S. Kurtz, E. Churchwell, C. M. Walmsley, and R. Cesaroni, Astrophys. J. 460, 359 (1996). open in new tab
  13. V. Pankonin, E. Churchwell, C. Watson, and J. H. Bieging, Astrophys. J. 558, 194 (2001). open in new tab
  14. M. B. Robin, Higher Excited States of Polyatomic Molecules (Academic, New York, 1974), Vols. I and II; 1986, Vol. III. open in new tab
  15. A. P. Hitchcock, M. Tronc, and A. Modelli, J. Phys. Chem. 93, 3068 (1989). open in new tab
  16. F. Edard and M. Tronc, J. Phys. B: At. Mol. Phys. 20, L265 (1987). open in new tab
  17. F. Edard, A. P. Hitchcock, and M. Tronc, J. Phys. Chem. 94, 2768 (1990). open in new tab
  18. K. D. Jordan and P. D. Burrow, Acc. Chem. Res. 11, 341 (1978). open in new tab
  19. M. Ben Arfa and M. Tronc, J. Electron Spectrosc. Relat. Phenom. 50, 117 (1990). open in new tab
  20. M. Heni and E. Illenberger, Int. J. Mass Spetrosc. Ion Processes 73, 127 (1986). open in new tab
  21. W. Sailer, A. Pelc, P. Limao-Vieira, N. J. Mason, J. Limtrakul, P. Scheier, M. Probst, and T. D. Meark, Chem. Phys. Lett. 381, 216 (2003). open in new tab
  22. P. A. Steiner and W. Gordy, J. Mol. Spectrosc. 21, 291 (1966). open in new tab
  23. I. I. Fabrikant, J. Phys. B: At., Mol. Opt. Phys. 49, 222005 (2016). open in new tab
  24. G. A. Gallup, P. Burrow, and I. Fabrikant, Phys. Rev. A 79, 042701 (2009). open in new tab
  25. M. Zawadzki, M. Ranković, J. Kočišek, and J. Fedor, Phys. Chem. Chem. Phys. 20, 6838 (2018). open in new tab
  26. L. S. Maioli and M. H. F. Bettega, Eur. Phys. J. D 71, 322 (2017). open in new tab
  27. M. M. Fujimoto, E. V. R. de Lima, and J. Tennyson, Eur. Phys. J. D 69, 153 (2015). open in new tab
  28. M. A. Khakoo, C. E. Beckmann, S. Trajmar, and G. Csanak, J. Phys. B: At. Mol. Phys. 27, 3159 (1994). open in new tab
  29. ETP Equipe Thermodynamique et Plasmas (ETP) model AF151. open in new tab
  30. M. A. Khakoo, J. Blumer, K. Keane, C. Campbell, H. Silva, M. C. A. Lopes, C. Winstead, V. McKoy, R. F. da Costa, L. G. Ferreira, M. A. P. Lima, and M. H. F. Bettega, Phys. Rev. A 77, 042705 (2008). open in new tab
  31. M. Hughes, K. E. James, Jr., J. G. Childers, and M. A. Khakoo, Meas. Sci. Technol. 14, 841 (2003). open in new tab
  32. R. K. Nesbet, Phys. Rev. A 20, 58 (1979). open in new tab
  33. D. F. Register, S. Trajmar, and S. K. Srivastava, Phys. Rev. A 21, 1134 (1980). open in new tab
  34. M. A. Khakoo, K. Keane, C. Campbell, N. Guzman, and K. Hazlett, J. Phys. B: At., Mol. Opt. Phys. 40, 3601 (2007). open in new tab
  35. A. Sakaamini, C. Navarro, J. Cross, L. R. Hargreaves, M. A. Khakoo, K. Fedus, C. Winstead, and V. McKoy, J. Phys. B: At., Mol. Opt. Phys. 48, 205202 (2015). open in new tab
  36. M. A. Khakoo, H. Silva, J. Muse, M. C. A. Lopes, C. Winstead, and V. McKoy, Phys. Rev. A 78, 052710 (2008). open in new tab
  37. L. S. Maioli and M. H. F. Bettega, private communications (2018). open in new tab
Verified by:
Gdańsk University of Technology

seen 99 times

Recommended for you

Meta Tags