Low-Profile ESPAR Antenna for RSS-Based DoA Estimation in IoT Applications - Publication - Bridge of Knowledge

Search

Low-Profile ESPAR Antenna for RSS-Based DoA Estimation in IoT Applications

Abstract

In this paper, we have introduced a low-profile electronically steerable parasitic array radiator (ESPAR) antenna that can successfully be used to estimate the direction-of-arrival (DoA) of incoming signals in wireless sensor network (WSN) applications, in which the height of the complete antenna has to be low. The proposed antenna is over three times lower than high-profile ESPAR antenna designs currently available in the literature for the DoA estimation; it can provide eight unique main beam directions and relies on simplified beam steering, which makes it applicable to simple and inexpensive WSN nodes. Measurements using our fabricated ESPAR antenna prototype indicate that relying solely on the received signal strength values recorded at the antenna output port, it is possible to achieve accurate DoA estimation results with error levels similar to those available for high-profile ESPAR antennas relying on the similar energy-efficient simplified beam steering concept and having 12 unique main beam directions. As a consequence, the overall time required for the DoA estimation using the proposed antenna can be reduced by 33%.

Citations

  • 4 1

    CrossRef

  • 0

    Web of Science

  • 4 6

    Scopus

Cite as

Full text

download paper
downloaded 61 times
Publication version
Accepted or Published Version
License
Copyright (2019 IEEE)

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
IEEE Access no. 7, pages 17403 - 17411,
ISSN: 2169-3536
Language:
English
Publication year:
2019
Bibliographic description:
Burtowy M., Rzymowski M., Kulas Ł.: Low-Profile ESPAR Antenna for RSS-Based DoA Estimation in IoT Applications// IEEE Access -Vol. 7, (2019), s.17403-17411
DOI:
Digital Object Identifier (open in new tab) 10.1109/access.2019.2895740
Bibliography: test
  1. A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, "Internet of Things for Smart Cities," IEEE Internet of Things J., vol. 1, no. 1, pp. 22-32, Feb. 2014. open in new tab
  2. F. Alam, R. Mehmood, I. Katib, N. N. Albogami, and A. Albeshri, "Data Fusion and IoT for Smart Ubiquitous Environments: A Survey," IEEE Access, vol. 5, pp. 9533-9554, 2017. open in new tab
  3. P. Sotres, J. R. Santana, L. Sánchez, J. Lanza, and L. Muñoz, "Practical Lessons From the Deployment and Management of a Smart City Internet-of-Things Infrastructure: The SmartSantander Testbed Case," IEEE Access, vol. 5, pp. 14309-14322, 2017. open in new tab
  4. A. Kausar, H. Mehrpouyan, M. Sellathurai, R. Qian, and S. Kausar, "Energy efficient switched parasitic array antenna for 5G networks and IoT," in Proc. 2016 Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, Nov. 2016, pp. 1-5. open in new tab
  5. R. Harrington, "Reactively controlled directive arrays," IEEE Trans. Antennas Propag., vol. AP-26, no. 3, pp. 390-395, May 1978. open in new tab
  6. K. Gyoda and T. Ohira, "Design of electronically steerable passive array radiator (ESPAR) antennas," in Proc. IEEE Antennas and Propagation Symp., vol. 2, Salt Lake City, UT, Jul. 2000, pp. 922- 925.
  7. R. Schlub and D. V. Thiel, "Switched parasitic antenna on a finite ground plane with conductive sleeve," IEEE Trans. Antennas Propag., vol. 52, no. 5, pp. 1343-1347, May 2004. open in new tab
  8. L. Kulas, "Direction-of-Arrival Estimation Using an ESPAR Antenna with Simplified Beam Steering", in Proc. 47th Euro. Microw. Conf., Nuremberg, Germany, Oct. 2017, pp. 296-299. open in new tab
  9. E. Taillefer, C. Plapous, J. Cheng, K. Iigusa, and T. Ohira, "Reactance-domain MUSIC for ESPAR antennas (experiment)," in Proc. IEEE Wireless Communications and Networking Confe., vol. 1, New Orleans, LA, Mar. 2003, pp. 98-102. open in new tab
  10. E. Taillefer, A. Hirata, and T. Ohira, "Direction-of-arrival estimation using radiation power pattern with an ESPAR antenna," IEEE Trans. Antennas Propag., vol. 53, no. 2, pp. 678-684, Feb. 2005. open in new tab
  11. L. Kulas, "RSS-based DoA Estimation Using ESPAR Antennas and Interpolated Radiation Patterns," IEEE Antennas Wireless Propag. Lett., vol. 17, pp.25-28, 2018. open in new tab
  12. M. Donelli, F. Viani, P. Rocca, and A. Massa, "An innovative multiresolution approach for DOA estimation based on a support vector classification," IEEE Trans. Antennas Propag., vol. 57, no. 8, pp. 2279-2292, Aug. 2009. open in new tab
  13. F. Viani, L. Lizzi, M. Donelli, D. Pregnolato, G. Oliveri, and A. Massa, "Exploitation of parasitic smart antennas in wireless sensor networks," Journal of Electromagnetic Waves and Applications, vol. 24, no. 7, pp. 993-1003, Jan. 2010. open in new tab
  14. S. Chandran, Advances in Direction-of-Arrival Estimation. London, U.K.: Artech House, 2005.
  15. M. Rzymowski, P. Woznica, and L. Kulas, "Single-Anchor Indoor Localization Using ESPAR Antenna," IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 1183-1186, 2016. open in new tab
  16. Alan Bensky, Wireless Positioning Technologies and Applications, Norwood, MA: Artech House, Inc., 2007. open in new tab
  17. S. Sugiura and H. Iizuka, "Reactively Steered Ring Antenna Array for Automotive Application," IEEE Trans. Antennas Propag., vol. 55, no. 7, pp. 1902-1908, Jul. 2007. open in new tab
  18. R. Dinger, "A planar version of a 4.0 GHz reactively steered adaptive array," IEEE Trans. Antennas Propag., vol. 34, no. 3, pp. 427-431, Mar. 1986. open in new tab
  19. E. Nishiyama, R. Hisadomi and M. Aikawa, "Beam controllable microstrip antenna with switching diode," in Proc. IEEE Antennas and Propagation Symp., Albuquerque, NM, Jul. 2006, pp. 2337-2340. open in new tab
  20. W. Chen, J. Sun, X. Wang and Z. Feng, "Design of Planar ESPAR Antenna by Using Sidelobe Reduction Algorithm," in Proc. Microw. Millim. Wave Technol., ICMMT, Apr. 18-21, 2007, pp. 1-4. open in new tab
  21. L. Zhang, S. Gao, Q. Luo, P. R. Young and Q. Li, "Planar Ultrathin Small Beam-Switching Antenna," IEEE Trans. Antennas Propag., vol. 64, no. 12, pp. 5054-5063, Dec. 2016. open in new tab
  22. T. Zhang, "A new planar electronically steerable passive array radiator antenna," in Proc. 10th International Symp. on Antennas, Propagation & EM Theory, Xian, China, Jan. 2012, pp. 1-3. open in new tab
  23. J. Sun, W. Chen, X. Wang, Z. Feng, Y. Furuya and A. Kuramoto, "Realization and measurements of planar switchable antenna system," in Proc. Asia-Pacific Microw. Conf., Yokohama, Japan, Dec. 2006, pp. 339-342.
  24. H. Kato and Y. Kuwahara, "Novel ESPAR antenna," in Proc. Antennas Propag. Soc. Int. Symp., Jul. 2005, vol. 4B, pp. 23-26. open in new tab
  25. M. R. Kamarudin, P. S. Hall, F. Colombel and M. Himdi, "Electronically Switched Beam Disk-Loaded Monopole Array Antenna," Progress In Electromagnetics Research, vol. 101, pp. 339- 347, 2010. open in new tab
  26. J. Seongheon, H. Dohyuk and W. J. Chappell, "A planar parasitic array antenna for tunable radiation pattern," in Proc. IEEE Antennas Propag. Soc. Int. Symp., Jun. 2009, pp. 1-4.
  27. M. Rzymowski and L. Kulas, "Influence of ESPAR Antenna Radiation Patterns Shape on PPCC-Based DoA Estimation Accuracy," in Proc. 22nd Int. Conf. on Microw., Radar and Wireless Communications, Poznan, Poland, 2018, (in press). open in new tab
  28. K. Kaneta, T. Kondo, M. Ando and N. Goto, "A flush-mounted antenna for mobile communications," in Proc. IEEE AP-S. International Symposium, Antennas and Propagation, vol.3, Syracuse, NY, Jun. 1988, pp. 1323-1326. open in new tab
  29. F. Zavosh and J. T. Aberle, "Improving the performance of microstrip-patch antennas," IEEE Antennas Propag. Mag., vol. 38, no. 4, pp. 7-12, Aug. 1996. open in new tab
  30. N. C. Karmakar, "Investigations into a cavity-backed circular-patch antenna," IEEE Trans. Antennas Propag., vol. 50, no. 12, pp. 1706- 1715, Dec. 2002. open in new tab
  31. M. Plotka, M. Tarkowski, K. Nyka and L. Kulas, "A Novel Calibration Method for RSS-Based DoA Estimation Using ESPAR Antennas," in Proc. 22nd Int. Conf. on Microw., Radar and Wireless Communications, Poznan, Poland, 2018, (in press). open in new tab
  32. Q. Hou, H. Tang, Y. Liu and X. Zhao, "Dual-Frequency and Broadband Circular Patch Antennas With a Monopole-Type Pattern Based on Epsilon-Negative Transmission Line," in IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 442-445, 2012.
  33. R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook. Boston, MA: Artech House, 2001.
  34. D. Schaubert, F. Farrar, A. Sindoris and S. Hayes, "Microstrip antennas with frequency agility and polarization diversity," in IEEE Transactions on Antennas and Propagation, vol. 29, no. 1, pp. 118- 123, January 1981. open in new tab
  35. J. S. Dahele and K. F. Lee, "Theory and experiment on microstrip antennas with airgaps," in IEE Proceedings H -Microwaves, Antennas and Propagation, vol. 132, no. 7, pp. 455-460, December 1985. open in new tab
  36. M. Jusoh, T. Sabapathy, M. F. Jamlos and M. R. Kamarudin, "Reconfigurable Four-Parasitic-Elements Patch Antenna for High- Gain Beam Switching Application," in IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 79-82, 2014. open in new tab
  37. M. S. Alam and A. M. Abbosh, "Beam-Steerable Planar Antenna Using Circular Disc and Four PIN-Controlled Tapered Stubs for WiMAX and WLAN Applications," in IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 980-983, 2016. open in new tab
  38. S. -. Shi and W. -. Ding, "Radiation pattern reconfigurable microstrip antenna for WiMAX application," in Electronics Letters, vol. 51, no. 9, pp. 662-664, 30 4 2015. open in new tab
  39. M. Rzymowski and L. Kulas, "RSS-Based Direction-of-Arrival Estimation with Increased Accuracy for Arbitrary Elevation Angles Using ESPAR Antennas," in Proc. 12th Eur. Conf. Antennas Propag. (EuCAP 2018), London, UK, 2018, in press. open in new tab
  40. M. Groth and L. Kulas, "Accurate PPCC-Based DoA Estimation Using Multiple Calibration Planes for WSN Nodes Equipped with ESPAR Antennas," in Proc. 48th Euro. Microw. Conf. (EuMW 2018), Madrid, Spain, 2018, in press. open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 141 times

Recommended for you

Meta Tags