Abstract
Large deformations and stress analyses in two types of space structures that are intended for people to live in space have been studied in this research. The structure under analysis is assumed to rotate around the central axis to create artificial gravitational acceleration equal to the gravity on the Earth's surface. The analysis is fully dynamic, which is formulated based on the energy method by using the first-order shear deformation shell theory in two systems, cylindrical and torus. Also, the nonlinear von Kármán strain field has been assumed. The obtained set of partial differential equations has been solved using the semi-analytical polynomial solution method (SAPM). The main purpose of this paper is to study the effects of unusual conditions in the space outside the Earth's atmosphere (which is a complete vacuum environment without pressure) on the strength of the analyzed structure. The numerical results of the governing equations have been evaluated using those of other studies and the simulation efficiency performed in this research has been proven. Finally, the effect of important parameters on the numerical results, including the angular velocity of the structure (which causes artificial gravity), the amount of imposed mechanical and hygro-thermal loads, the structure size and material specifications have been investigated in more detail.
Citations
-
1 6
CrossRef
-
0
Web of Science
-
1 7
Scopus
Authors (5)
Cite as
Full text
- Publication version
- Accepted or Published Version
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
ACTA ASTRONAUTICA
no. 179,
pages 330 - 344,
ISSN: 0094-5765 - Language:
- English
- Publication year:
- 2021
- Bibliographic description:
- Dastjerdi S., Malikan M., Eremeev V., Akgöz B., Civalek Ö.: Mechanical simulation of artificial gravity in torus-shaped and cylindrical spacecraft// ACTA ASTRONAUTICA -Vol. 179, (2021), s.330-344
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.actaastro.2020.11.005
- Verified by:
- Gdańsk University of Technology
seen 167 times
Recommended for you
On the non-linear dynamics of torus-shaped and cylindrical shell structures
- S. Dastjerdi,
- B. Akgöz,
- Ö. Civalek
- + 2 authors
Structured deformation of granular material in the state of active earth pressure
- L. Danuta,
- A. Tordesillas,
- M. Pietrzak
- + 2 authors
Bending analysis of functionally graded nanoplates based on a higher-order shear deformation theory using dynamic relaxation method
- M. E. Golmakani,
- M. Malikan,
- S. Golshani Pour
- + 1 authors