Modified nanodiamond particle size studies by means of dynamic light scattering technique - Publication - Bridge of Knowledge

Search

Modified nanodiamond particle size studies by means of dynamic light scattering technique

Abstract

The Methods Utilizing the Phenomena of Light Scattering to Measure Particle Size distribution in different solvent, such as deionise water and alcohol and also to study the various structural formation when nanodiamond solution is placed on silicon surface.

The purpose of this research project is divided into two parts

  1. to configure the measurement units for examining modified nanodiamond particles, examination of their sizes when placed in different solvents and observing the zeta potential of the particles when placed in different solvents.
  2. to observe the structural formation for different nanodiamond particles droplets on silicon glass.

The particle size distribution will be measured using dynamic light scattering techniques using derived solutions made from either deionized water or alcohol. The particle charges will be determined using the zeta potential.

The structural formation drawn by droplets of nanodiamond particles will be observed using a biological microscope.

Author (1)

Cite as

Full text

download paper
downloaded 8 times
Publication version
Submitted Version
License
Copyright (This is the work of Efosa Ojomo)

Keywords

Details

Category:
Thesis, nostrification
Type:
Thesis, nostrification
Publication year:
2022
Bibliography: test
  1. Ballhaus, C., Ryan, C.G., Mernagh, T.P. and Green, D.H., 1994. The partitioning of Fe, Ni, Cu, Pt, and Au between sulfide, metal, and fluid phases: A pilot study. Geochimica et Cosmochimica Acta, 58(2), pp.811-826. open in new tab
  2. Balasubramanian, G., Chan, I.Y., Kolesov, R., Al-Hmoud, M., Tisler, J., Shin, C., Kim, C., Wojcik, A., Hemmer, P.R., Krueger, A. and Hanke, T., 2008. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature, 455(7213), pp.648-651. open in new tab
  3. Butler, J.E. and Windischmann, H., 1998. Developments in CVD-diamond synthesis during the past decade. MRS Bulletin, 23(9), pp.22-27. open in new tab
  4. Carlisle, D.B. and Braman, D.R., 1991. Nanometre-size diamonds in the Cretaceous/Tertiary boundary clay of Alberta. Nature, 352(6337), pp.708-709. open in new tab
  5. Capdevila, R., Arndt, N., Letendre, J. and Sauvage, J.F., 1999. Diamonds in volcaniclastic komatiite from French Guiana. Nature, 399(6735), pp.456-458. open in new tab
  6. EUGenMed, Cardiovascular Clinical Study Group, Regitz-Zagrosek, V., Oertelt-Prigione, S., Prescott, E., Franconi, F., Gerdts, E., Foryst-Ludwig, A., Maas, A.H., Kautzky-Willer, A. and Knappe-Wegner, D., 2016. Gender in cardiovascular diseases: impact on clinical manifestations, management, and outcomes. European heart journal, 37(1), pp.24-34. open in new tab
  7. George E., H. and Rondi M., D. 2005 'Diamonds Article', March. open in new tab
  8. Hammouda, Tahar, and Shantanu Keshav. "Melting in the mantle in the presence of carbon: Review of experiments and discussion on the origin of carbonatites." Chemical Geology 418 (2015): 171-188. open in new tab
  9. Heaney, P.J., Vicenzi, E.P. and De, S., 2005. Strange diamonds: the mysterious origins of carbonado and framesite. Elements, 1(2), pp.85-89. open in new tab
  10. Kaur, R. and Badea, I., 2013. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems. International journal of nanomedicine, 8, p.203.
  11. Kenneth S, S. 1990 An Introduction to Dynamic Light Scattering by Macromolecules. Harcourt Brace Jovanovich, Publishers. open in new tab
  12. Kovářík, T., Bělský, P., Rieger, D., Ilavsky, J., Jandová, V., Maas, M., Šutta, P., Pola, M. and Medlín, R., 2020. Particle size analysis and characterization of nanodiamond dispersions in water and dimethylformamide by various scattering and diffraction methods. Journal of Nanoparticle Research, 22(2), pp.1-17. open in new tab
  13. Lars, Ø. 2019 'Light Scattering a brief introduction', University of Copenhagen [Preprint].
  14. Masahiko, A. (ed.) 2019 Measurement Techniques and Practices of Colloid and Interface Phenomena. Springer. open in new tab
  15. Meen, J.K., Eggler, D.H. and Ayers, J.C., 1989. Experimental evidence for very low solubility of rare-earth elements in C02-rich fluids at mantle conditions. Nature, 340(6231), pp.301-303. open in new tab
  16. Meyer, H. O. A., and F. R. Boyd. "Composition and origin of crystalline inclusions in natural diamonds." Geochimica et Cosmochimica Acta 36.11 1972: 1255-1273. open in new tab
  17. Mineralogical Association of Canada Short Course 44, February 2014, Tucson AZ, p. 1-28. open in new tab
  18. Morse, J.M., Barrett, M., Mayan, M., Olson, K. and Spiers, J., 2002. Verification strategies for establishing reliability and validity in qualitative research. International journal of qualitative methods, 1(2), pp.13-22. open in new tab
  19. Mochalin, V.N., Shenderova, O., Ho, D. and Gogotsi, Y., 2012. The properties and applications of nanodiamonds. Nature nanotechnology, 7(1), pp.11-23. open in new tab
  20. Neupane, M., Alidoust, N., Xu, S., Kondo, T., Ishida, Y., Kim, D.J., Liu, C., Belopolski, I., Jo, Y.J., Chang, T.R. and Jeng, H.T., 2013. Surface electronic structure of the topological Kondo-insulator candidate correlated electron system SmB6. Nature communications, 4(1), pp.1-7. open in new tab
  21. Pecora, R. 1985 Dynamic Light Scattering Applications of Photon Correlation Spectroscopy. open in new tab
  22. Piotr, K. (A.P Instrument) 'Particle size analysis Zetasizer Nano Zetasizer Pro/Ultra', API Instrs [Preprint]. Available at: piotr.krystosiak@apinstruments.pl. open in new tab
  23. Richardson, S.H., Gurney, J.J., Erlank, A.J. and Harris, J., 1984. Origin of diamonds in old enriched mantle. Nature, 310(5974), pp.198-202. open in new tab
  24. Simakov, S.K., 2006. Redox state of eclogites and peridotites from sub-cratonic upper mantle and a connection with diamond genesis. Contributions to Mineralogy and Petrology, 151(3), pp.282-296. open in new tab
  25. Shakun, A., Vuorinen, J., Hoikkanen, M., Poikelispää, M. and Das, A., 2014. Hard nanodiamonds in soft rubbers: Past, present and future-A review. Composites Part A: Applied science and manufacturing, 64, pp.49-69. open in new tab
  26. Shigley, J.E., Chapman, J. and Ellison, R.K., 2001. Discovery and mining of the Argyle diamond deposit, Australia. Gems & Gemology, 37(1), pp.26-41. open in new tab
  27. Shimizu, Y., 2003. The nature of Ogasawara and its conservation. GLOBAL ENVIRONMENTAL RESEARCH-ENGLISH EDITION-, 7(1), pp.3-14. open in new tab
  28. Tamil Many K Thandavan et al. 2010 'Diamond: Synthesis, Characterisation and Applications', p. 24.
  29. Thandavan, Tamil Many K., et al. 2014 "Photoluminescence properties of un-doped and Mn- doped ZnO nanostructures." Materials Express 4.6: 475-482. open in new tab
  30. Trull, T., Nadeau, S., Pineau, F., Polve, M. and Javoy, M., 1993. C-He systematics in hotspot xenoliths: Implications for mantle carbon contents and carbon recycling. Earth and Planetary Science Letters, 118(1-4), pp.43-64. open in new tab
  31. Thomas Stachel 2014 'Diamond', T. Stachel Department of Earth and Atmospheric Sciences University of Alberta, 1-26 Earth Sciences Building Edmonton, Alberta, p. 29. open in new tab
  32. Trull, T., Nadeau, S., Pineau, F., Polve, M. and Javoy, M., 1993. C-He systematics in hotspot xenoliths: Implications for mantle carbon contents and carbon recycling. Earth and Planetary Science Letters, 118(1-4), pp.43-64. open in new tab
  33. Wild, C., Koidl, P., Müller-Sebert, W., Walcher, H., Kohl, R., Herres, N., Locher, R., Samlenski, R. and Brenn, R., 1993. Chemical vapour deposition and characterization of smooth {100}- faceted diamond films. Diamond and Related Materials, 2(2-4), pp.158-168. open in new tab
Verified by:
No verification

seen 10 times

Recommended for you

Meta Tags