Multiresolution analysis and adaptive estimation on a sphere using stereographic wavelets - Publication - MOST Wiedzy

Search

Multiresolution analysis and adaptive estimation on a sphere using stereographic wavelets

Abstract

We construct an adaptive estimator of a density function on d dimensional unit sphere Sd (d ≥ 2), using a new type of spherical frames. The frames, or as we call them, stereografic wavelets are obtained by transforming a wavelet system, namely Daubechies, using some stereographic operators. We prove that our estimator achieves an optimal rate of convergence on some Besov type class of functions by adapting to unknown smoothness. Our new construction of stereografic wavelet system gives us a multiresolution approximation of L2(Sd) which can be used in many approximation and estimation problems. In this paper we also demonstrate how to implement the density estimator in S2 and we present a finite sample behavior of that estimator in a numerical experiment.

Citations

  • 1

    CrossRef

  • 1

    Web of Science

  • 1

    Scopus

Cite as

Full text

download paper
downloaded 11 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS no. 179, pages 41 - 71,
ISSN: 0362-546X
Language:
English
Publication year:
2019
Bibliographic description:
Ćmiel B., Dziedziul K., Jarzębkowska N.: Multiresolution analysis and adaptive estimation on a sphere using stereographic wavelets// NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS -Vol. 179, (2019), s.41-71
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.na.2018.08.003
Bibliography: test
  1. P. Auscher, G. Weiss, M. V. Wickerhauser, Local sine and cosine bases of Coifman and Meyer and the construction of smooth wavelets. Wavelets, 237-256, Wavelet Anal. Appl., 2, Academic Press, Boston, MA, 1992. open in new tab
  2. P. Baldi, G. Kerkyacharian, D. Marinucci, and D. Picard, Adaptive density estimation for directional data using needlets. Ann. Statist. Volume 37, Number 6A (2009), 3362-3395. open in new tab
  3. S. Boucheron, G. Lugosi G. and P. Massart, Concentration Inequalities: A Nonasymptotic Theory of Independence, Oxford University Press, Oxford, UK 2013 open in new tab
  4. M. Bownik, K. Dziedziul, Smooth Orthogonal Projections on Sphere, Constructive Approximation vol. 41 (1), 23-48, 2015. open in new tab
  5. M. Bownik, K. Dziedziul and A. Kamont, Smooth orthogonal projections on Riemannian manifold, 2018, arXiv:1803.03634. open in new tab
  6. A. Bull, R. Nickl, Adaptive confidence sets in L 2 , Probability Theory and Related Fields, vol. 156 (3-4), 889-919, 2013. open in new tab
  7. B. Ćmiel, K. Dziedziul, Density smoothness estimation problem using a wavelet approach, ESAIM: Probability and Statistics, 18, 130-144, 2014.
  8. B. Ćmiel, K. Dziedziul, B. Wolnik, The smoothness test for a density function, Nonlinear Analysis: Theory, Methods & Applications, 104, 21-39, 2014. open in new tab
  9. F. Dai, Characterizations of function spaces on the sphere using frames, Transactions of the American Mathematical Society, vol. 359 (2), 567-589, 2007. open in new tab
  10. F. Dai, Y. Xu, Approximation theory and harmonic analysis on spheres and balls, Springer-Verlag, New York, 2013. open in new tab
  11. I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathe- matics, Vol. 61, Society for Industrial and Applied Mathematics, Philadelphia, 1992.
  12. C. Durastanti, Adaptive Global Thresholding on the Sphere, Journal of Multivariate Analysis, Vol. 151, 110-132, 2016. open in new tab
  13. W. Härdle, G. Kerkyacharian, D. Picard, A. Tsybakov, Wavelets, Approximation, and Statistical Applications. Lecture Notes in Statistics, 129. Springer-Verlag, New York, 1998. open in new tab
  14. E. Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities. Courant Lecture Notes in Mathematics, 5. American Mathematical Society, Providence, RI, 1999. open in new tab
  15. K. Dziedziul, M. Kucharska, B. Wolnik, Estimation of the smoothness of density, Journal of Non- parametric Statistics, vol. 23 (4), 991-1001, 2011. open in new tab
  16. D. Geller, I. Pesenson, Band-limited localized Parseval frames and Besov spaces on compact homoge- neous manifolds, Journal of Geometric Analysis, vol. 21 (2), 334-371, 2011. open in new tab
  17. E. Giné, R. Nickl, Rates of contraction for posterior distributions in L r -metrics, 1 ≤ r ≤ ∞, The Annals of Statistics, 2883-2911, 2011. open in new tab
  18. E. Giné and R. Nickl Mathematical Foundations of Infinite-Dimensional Statistical Models, Cam- bridge University Press 2015.
  19. E. Hernández, G. Weiss, A First Course on Wavelets, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1996. open in new tab
  20. M. R. Hestenes, Extension of the range of a differentiable function, Duke Math. J., 8, 183-192, 1941. open in new tab
  21. P. Hall, Central limit theorem for integrated square error of multivariate nonparametric density esti- mators, Journal of Multivariate Analysis, vol. 14 (1), 1-16, 1984. open in new tab
  22. P. Hall, G. Kerkyacharian, and D. Picard, Block threshold rules for curve estimation using kernel and wavelet methods, Ann. Statist. Volume 26, Number 3 (1998), 922-942. open in new tab
  23. G. Kerkyacharian, R. Nickl, D. Picard, Concentration inequalities and confidence bands for needlet density estimators on compact homogeneous manifolds, Probability Theory and Related Fields, vol. 153 (1-2), 363-404, 2012. open in new tab
  24. G. Kerkyacharian, T. M. Pham Ngoc, and D. Picard, Localized spherical deconvolution, Ann. Statist. Volume 39, Number 2 (2011), 1042-1068. open in new tab
  25. A. Kueh, Locally adaptive density estimation on the unit sphere using needlets. Constr. Approx. 36 (3), 433-458, 2012. open in new tab
  26. O.V. Lepski, Asymptotically minimax adaptive estimation I: Upper bounds. Optimally adaptive esti- mates., Theory Probab. Appl. 36, (1991) 682-697. open in new tab
  27. P. I. Lizorkin, and Kh. P. Rustamov, Nikol'skij-Besov spaces on the sphere in connection with ap- proximation theory, Trudy Matematicheskogo Instituta im. VA Steklova, vol. 204, 172-200, 1993
  28. Y. Meyer, Wavelets and Operators (Cambridge Studies in Advanced Mathematics) (D. Salinger, Trans.). Cambridge: Cambridge University Press, 1993. open in new tab
  29. F. Narcowich, P. Petrushev, J. Ward, Decomposition of Besov and Triebel-Lizorkin spaces on the sphere, Journal of Functional Analysis, vol. 238 (2), 530-564, 2006. open in new tab
  30. F. Narcowich, P. Petrushev, J. Ward, Localized tight frames on spheres. SIAM J. Math. Anal. 38 (2), 574-594, 2006. Faculty of Applied Mathematics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland. E-mail address: cmielbog@gmail.com Faculty of Applied Mathematics, Gdańsk University of Technology, ul. G. Narutow- icza 11/12, 80-952 Gdańsk, Poland E-mail address: karol.dziedziul@pg.edu.pl Faculty of Applied Mathematics, Gdańsk University of Technology, ul. G. Narutow- icza 11/12, 80-952 Gdańsk, Poland
Verified by:
Gdańsk University of Technology

seen 29 times

Recommended for you

Meta Tags