Abstract
We construct an adaptive estimator of a density function on d dimensional unit sphere Sd (d ≥ 2), using a new type of spherical frames. The frames, or as we call them, stereografic wavelets are obtained by transforming a wavelet system, namely Daubechies, using some stereographic operators. We prove that our estimator achieves an optimal rate of convergence on some Besov type class of functions by adapting to unknown smoothness. Our new construction of stereografic wavelet system gives us a multiresolution approximation of L2(Sd) which can be used in many approximation and estimation problems. In this paper we also demonstrate how to implement the density estimator in S2 and we present a finite sample behavior of that estimator in a numerical experiment.
Citations
-
1
CrossRef
-
0
Web of Science
-
1
Scopus
Authors (3)
Cite as
Full text
- Publication version
- Accepted or Published Version
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
no. 179,
pages 41 - 71,
ISSN: 0362-546X - Language:
- English
- Publication year:
- 2019
- Bibliographic description:
- Ćmiel B., Dziedziul K., Jarzębkowska N.: Multiresolution analysis and adaptive estimation on a sphere using stereographic wavelets// NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS -Vol. 179, (2019), s.41-71
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.na.2018.08.003
- Verified by:
- Gdańsk University of Technology
seen 175 times