On geometrically non-linear FEA of laminated FRP composite panels - Publication - Bridge of Knowledge

Search

On geometrically non-linear FEA of laminated FRP composite panels

Abstract

The paper presents a state-of-art review on Finite Element Analysis (FEA) of geometrically non-linear problems for laminated composite plates and shells made as fibre reinforced polymer (FRP) laminates. Besides a subjective overview of the historical development of geometrically non-linear FEA of laminated FRP composite panels, some remarks on possible future issues in this research area are given

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cite as

Full text

download paper
downloaded 16 times
Publication version
Accepted or Published Version
License
Copyright (2014 Taylor & Francis Group)

Keywords

Details

Category:
Conference activity
Type:
materiały konferencyjne indeksowane w Web of Science
Title of issue:
10th Jubilee Conference on Shell Structures - Theory and Applications (SSTA) strony 33 - 42
Publication year:
2014
Bibliographic description:
Kreja I..: On geometrically non-linear FEA of laminated FRP composite panels, W: 10th Jubilee Conference on Shell Structures - Theory and Applications (SSTA), 2014, CRC PRESS - TAYLOR & FRANCIS GROUP,.
DOI:
Digital Object Identifier (open in new tab) 10.1201/b15684-7
Bibliography: test
  1. Ambur, D. R., Jaunky N., Hilburger, M. & Dávila, C. G. 2004. Progressive failure analyses of compression-loaded com- posite curved panels with and without cutouts. Composite Structures 65: 143-155. open in new tab
  2. Arbocz, J. & Starnes Jr., J. H. 2002. Future directions and chal- lenges in shell stability analysis. Thin-Walled Structures 40: 729-754. open in new tab
  3. Arciniega, R.A. & Reddy, J.N. 2007. Tensor-based finite ele- ment formulation for geometrically nonlinear analysis of shell structures. Computer Methods in Applied Mechanics and Engineering 196: 1048-1073. open in new tab
  4. Balah, M. & Al-Ghamedy, H. N. 2002. Finite element formula- tion of a third order laminated finite rotation shell element. Computers & Structures 80: 1975-1990. open in new tab
  5. Başar, Y. Ding, Y. & Schultz, R. 1993. Refined shear- deformation models for composite laminates with finite ro- tations. International Journal of Solids & Structures 30: 2611-2638. open in new tab
  6. Başar, Y., Itskov, M. & Eckstein, A. 2000. Composite lami- nates: nonlinear interlaminar stress analysis by multi-layer shell elements. Computer Methods in Applied Mechanics & Engineering 185: 367-397. open in new tab
  7. Belytschko, T. 1986. A review of recent developments in plate and shell elements. In A. K. Noor (ed.), Computational Me- chanics -Advances and Trends, Winter Annual Meeting of ASME, Anaheim, CA, 1986 Dec. 7-1: 217-230. open in new tab
  8. Brank, B., Perić, D. & Damjanić, F. B. 1995. On implementa- tion of a nonlinear four node shell finite element for thin multilayered elastic shells. Computational Mechanics 16: 341-359. open in new tab
  9. Broggi, M. & Schuëller, G.I. 2011. Efficient modeling of im- perfections for buckling analysis of composite cylindrical shells. Engineering Structures 33: 1796-1806. open in new tab
  10. Carrera, E. 2002. Theories and Finite Elements for Multilay- ered, Anisotropic, Composite Plates and Shells. Archives of Computational Methods in Engineering 9: 87-140. open in new tab
  11. Chaplin, C. P. & Palazotto, A. N. 1996. The collapse of com- posite cylindrical panels with various thickness using Finite Element Analysis. Computers & Structures 60: 797-815. open in new tab
  12. Chróścielewski, J., Gilewski, W. & Kreja, I. 2011. Fifty years of Finite Element Analysis of plates and shells (1960- 2010). Proc. the 19th Int. Conf. CMM 2011, Warsaw, 9-12 May 2011: 49-50, Warsaw University of Technology. open in new tab
  13. Chróścielewski, J., Kreja, I., Sabik, A. & Witkowski, W. 2011. Modeling of Composite Shells in 6-Parameter Nonlinear Theory with Drilling Degree of Freedom. Mechanics of Ad- vanced Materials and Structures 18: 403-419. open in new tab
  14. Clough, R. W. 2004. Early history of the finite element method from the view point of a pioneer. Int. Journal for Numerical Methods in Engineering 60: 283-287. open in new tab
  15. Dvorkin, E. N. & Bathe, K. -J. 1984. A continuum mechanics based four-node shell element for general nonlinear analy- sis. Engineering Computations 1: 77-88. open in new tab
  16. Ganapathi, M. & Varadan, T.K. 1995. Nonlinear free flexural vibrations of laminated circular cylindrical shells. Compos- ite Structures 30: 33-49. open in new tab
  17. Givoli, D. 2001. Top Ten Computational Methods of the 20th Century. Expressions IACM 11: 5-9.
  18. Han, S.-D., Tabiei, A. & Park, W.-T. 2008. Geometrically nonlinear analysis of laminated composite thin shells using a modified First-order shear deformable element-based La- grangian shell element. Composite Structures 82: 465-474. open in new tab
  19. Hilburger, M. W. & Starnes Jr., J. H. 2002. Effects of imper- fections on the buckling response of compression-loaded composite shells. Int. Journal of Non-Linear Mechanics 37: 623-643. open in new tab
  20. Hu, H.-T., Yang, C.-H. & Lin, F.-M. 2006. Buckling analyses of composite laminate skew plates with material nonlinear- ity. Composites Part B: Engineering 37: 26-36. open in new tab
  21. Jaunky N., Knight Jr., N. F. & Ambur, D. R. 1996. Formula- tion of an improved smeared stiffener theory for buckling analysis of grid-stiffened composite panels. Composites Part B: Engineering 27: 519-526 open in new tab
  22. Jones, R. M. 1999. Mechanics of composite materials -2 nd ed. London: Taylor & Francis. open in new tab
  23. Jun, S. M. & Hong, C. S. 1988. Buckling behavior of laminated composite cylindrical panels under axial compression. Computers & Structures 29: 479-490. open in new tab
  24. Kant, T. & Babu, C. S. 2000. Thermal buckling analysis of skew fibre-reinforced composite and sandwich plates using shear deformable finite element models. Composite Struc- tures 49: 77-85. open in new tab
  25. Kim, K. & Voyiadjis, G. Y. 1999. Non-linear finite element analysis of composite panels. Composites: Part B 30: 365- 381. open in new tab
  26. Kim, K. D., Han, S.C. & Suthasupradita, S. 2007. Geometri- cally non-linear analysis of laminated composite structures using a 4-node co-rotational shell element with enhanced strains. Int. Journal of Non-Linear Mechanics 42: 864-881. open in new tab
  27. Klinkel, S., Gruttmann, F. & Wagner, W. 1999. A continuum based three-dimensional shell element for laminated struc- tures. Computers & Structures 71: 43-62. open in new tab
  28. Kreja, I. 2005. Stability analysis of cylindrical composite shells in MSC/Nastran, Archives of Civil and Mechanical Engi- neering 5: 31-41.
  29. Kreja, I. 2006. Critical examination of benchmark problems for large rotation analysis of laminated shells. In W. Pietrasz- kiewicz & C. Szymczak (eds), Shell Structures: Theory and Applications: 481-485. London: Taylor and Francis Group.
  30. Kreja, I. 2011. A literature review on computational models for laminated composite and sandwich panels. Central Euro- pean Journal of Engineering 1: 59-80. open in new tab
  31. Kreja, I., Schmidt, R. & Reddy, J. N. 1997. Finite elements based on the first-order shear deformation moderate rota- tion shell theory with applications to the analysis of com- posite structures. International Journal of Non-Linear Me- chanics 32: 1123-1142. open in new tab
  32. Kreja, I. & Schmidt, R. 2006. Large rotations in first-order shear deformation FE analysis of laminated shells. Int. Journal of Non-Linear Mechanics 41: 101-123. open in new tab
  33. Kulikov, G. M. & Plotnikova, S. V. 2003. Non-linear strain- displacement equations exactly representing large rigid- body motions. Part I Timoshenko-Mindlin shell theory. Computer Methods in Applied Mechanics & Engineering 192: 851-875. open in new tab
  34. Kweon, J. H. & Hong, C. S. 1994. An improved arc-length method for postbuckling analysis of composite cylindrical panels. Computers & Structures 53, 541-549. open in new tab
  35. Laschet, G. & Jeusette, J.-P. 1990. Postbuckling finite element analysis of composite panels, Composite Structures 14: 35- 48. open in new tab
  36. Lee, J., Gürdal, Z. & Griffin Jr., O. H. 1995. Postbuckling of laminated composites with delaminations", AIAA Journal 33: 1963-1970. open in new tab
  37. Lee, S. J. & Kanok-Nukulchai W. 1998. A nine-node assumed strain finite element for large deformation analysis of lami- nated shells. Int. Journal for Numerical Methods in Engi- neering 42:777-98. open in new tab
  38. Li, Z. X., Liu, Y. F., Izzuddin, B. A. & Vu-Quoc, L. 2011. A stabilized co-rotational curved quadrilateral composite shell element. Int. Journal for Numerical Methods in Engineer- ing 86: 975-999. open in new tab
  39. Lopes, C.S., Camanho, P.P., Gürdal, Z. & Tatting, B.F. 2007. Progressive failure analysis of tow-placed, variable- stiffness composite panels. Int. Journal of Solids and Struc- tures 44: 8493-8516. open in new tab
  40. MacNeal, R. H. 1998. Perspective on finite elements for shell analysis, Finite Elements in Analysis & Design 30: 175- 186. open in new tab
  41. Mallikarjunaa & Kant, T. 1993. A critical review and some re- sults of recently developed refined theories of fiber- reinforced laminated composites and sandwiches. Compos- ite Structures 23: 293-312.
  42. Masud, A., Tham, C. L. & Liu, W. K. 2000. A stabilized 3-D co-rotational formulation for geometrically nonlinear analy- sis of multi-layered shells. Computational Mechanics 26: 1- 12. open in new tab
  43. Noor, A. K. 1975. Stability of multilayered composite plates. Fibre Science and Technology 8: 81-89. open in new tab
  44. Noor, A. K. 1986. Global-local methodologies and their appli- cation to nonlinear analysis. Finite Elements in Analysis and Design 2: 333-346. open in new tab
  45. Noor, A.K., Starnes Jr., J.H. & Peters, J.M. 2000. Uncertainty analysis of composite structures. Computer Methods in Ap- plied Mechanics and Engineering 185: 413-432. open in new tab
  46. Pai, P. F. & Palazotto, A. N. 1995. Nonlinear displacement based finite element analysis of composite shells -A new total Lagrangian formulation. Int. Journal of Solids & Structures 32: 3047-3073. open in new tab
  47. Palazotto, A.N., Herup, E.J. & Gummadi, L.N.B. 2000. Finite element analysis of low-velocity impact on composite sandwich plates. Composite Structures 49: 209-227. open in new tab
  48. Phan, N. D. & Reddy, J. N. 1985. Analysis of laminated com- posite plates using a higher-order shear deformation theory. Int. Journal for Numerical Methods in Engineering 21: 2201-2219. open in new tab
  49. Reddy, J. N. 1989. On refined computational models of com- posite laminates, Int. Journal for Numerical Methods in Engineering 27: 361-382. open in new tab
  50. Reddy, J. N., Arciniega, R. A. & Wang, C. M. 2009. Recent developments in the analysis of carbon nanotubes and nonlinear shell theories, In W. Pietraszkiewicz & I. Kreja (eds), Shell Structures: Theory and Applications Vol. 2: 11- 18. London: Taylor and Francis Group.
  51. Reddy, J. N. & Chandrashekhara, K. 1985. Nonlinear analysis of laminated shells including transverse shear strains. AIAA Journal 23: 440-441. open in new tab
  52. Sabik, A. & Kreja, I. 2011. Stability analysis of multilayered composite shells with cut-outs. Archives of Civil and Me- chanical Engineering 11: 195-207. open in new tab
  53. Sabir, A. B. & Lock, A. C.: 1972. The application of finite elements to the large deflection geometrically non-linear behaviour of cylindrical shells. In C. A. Brebbia & H. Tot- tenham (eds.) Variational Methods in Engineering 2. Southampton University Press: 7/66-7/75.
  54. Saigal, S., Kapania, R. K. & Yang, T. Y. 1986. Geometrically nonlinear finite element analysis of imperfect laminated shells. Journal of Composite Materials 20: 197-214. open in new tab
  55. Schmit Jr., L.A. & Monforton, G.R. 1970. Finite deflection Discrete Element Analysis of sandwich plates and cylindri- cal shells with laminated faces, AIAA Journal 8: 1454- 1461. open in new tab
  56. Shi, Y., Lee, R.Y.Y. & Mei, C. 1999. Thermal postbuckling of composite plates using the finite element modal coordinate method. Journal of Thermal Stresses 22: 595-614.
  57. Singha, M. K. & Ganapathi, M. 2004. Large amplitude free flexural vibrations of laminated composite skew plates. Int. Journal of Non-Linear Mechanics 39: 1709 -1720. open in new tab
  58. Sze, K. Y., Liu, X. H. & Lo, S. H. 2004. Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elements in Analysis and Design 40: 1551-1569. open in new tab
  59. Tsai, C. T., Palazotto, A. N. & Dennis, S. T. 1991. Large- rotation snap-through buckling in laminated cylindrical panels. Finite Elements in Analysis and Design 9: 65-75. open in new tab
  60. Vasiliev, V. V. & Morozov, E. V. 2001. Mechanics and Analy- sis of Composite Materials. Oxford: Elsevier Science Ltd, Vu-Quoc, L. & Tan, X.G. 2003. Optimal solid shells for non- linear analyses of multilayer composites. I. Statics. Com- puter Methods in Applied Mechanics and Engineering 192: 975-1016.
  61. Wagner, W. 2010. Modeling of failure mechanisms in lami- nated composite shell structures. In W. Pietraszkiewicz & I. Kreja (eds), Shell Structures: Theory and Applications Vol. 2: 25-34. London: Taylor and Francis Group. open in new tab
  62. Wagner, W. & Gruttmann, F. 1994. A simple finite rotation formulation for composite shell elements. Engineering Computations 11: 145 -176. open in new tab
  63. Zhou, R. C., Xue, D. Y. & Mei, C. 1994. Finite element time domain -Modal formulation for nonlinear flutter of com- posite panels. AIAA Journal, 32: 2044-2052. open in new tab
Verified by:
Gdańsk University of Technology

seen 66 times

Recommended for you

Meta Tags