On Inadequacy of Sequential Design of Experiments for Performance-Driven Surrogate Modeling of Antenna Input Characteristics - Publication - Bridge of Knowledge

Search

On Inadequacy of Sequential Design of Experiments for Performance-Driven Surrogate Modeling of Antenna Input Characteristics

Abstract

Design of contemporary antennas necessarily involves electromagnetic (EM) simulation tools. Their employment is imperative to ensure evaluation reliability but also to carry out the design process itself, especially, the adjustment of antenna dimensions. For the latter, traditionally used parameter sweeping is more and more often replaced by rigorous numerical optimization, which entails considerable computational expenses, sometimes prohibitive. A potentially attractive way of expediting the simulation-based design procedures is the replacement of expensive EM analysis by fast surrogate models (or metamodels). Unfortunately, due to the curse of dimensionality and considerable nonlinearity of antenna characteristics, applicability of conventional modeling methods is limited to structures described by small numbers of parameters within narrow ranges thereof. A recently proposed nested kriging technique works around these issues by allocating the surrogate model domain within the regions containing designs that are of high quality with respect to the selected performance figures. This paper investigates whether sequential design of experiments (DoE) is capable of enhancing the modeling accuracy over one-shot space-filling data sampling originally implemented in the nested kriging framework. Numerical verification carried out for two microstrip antennas indicates that no noticeable benefits can be achieved, which contradicts the common-sense expectations. This result can be explained by a particular geometry of the confined domain of the performance-driven surrogate. As this set consists of nearly-optimum designs, the average nonlinearity of the antenna responses therein is almost location independent, therefore optimum training data allocation should be close to uniform. This is indeed corroborated by our experiments.

Citations

  • 2

    CrossRef

  • 0

    Web of Science

  • 2

    Scopus

Cite as

Full text

download paper
downloaded 25 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
IEEE Access no. 8, pages 78417 - 78426,
ISSN: 2169-3536
Language:
English
Publication year:
2020
Bibliographic description:
Pietrenko-Dąbrowska A., Kozieł S.: On Inadequacy of Sequential Design of Experiments for Performance-Driven Surrogate Modeling of Antenna Input Characteristics// IEEE Access -Vol. 8, (2020), s.78417-78426
DOI:
Digital Object Identifier (open in new tab) 10.1109/access.2020.2988891
Bibliography: test
  1. Q. Li, J. Dong, J. Yang, X. Zhuang, X. Yu, G. Hu, and Y. Guo, ''Automated topology optimization of internal antenna design using improved BPSO,'' in Proc. Int. Appl. Comput. Electromagn. Soc. Symp. (ACES), Suzhou, China, 2017, pp. 1-2. open in new tab
  2. C. Hu, S. Zeng, Y. Jiang, J. Sun, Y. Sun, and S. Gao, ''A robust technique without additional computational cost in evolutionary antenna optimiza- tion,'' IEEE Trans. Antennas Propag., vol. 67, no. 4, pp. 2252-2259, Apr. 2019. open in new tab
  3. A. Sharma, E. Kampianakis, and M. S. Reynolds, ''A dual-band HF and UHF antenna system for implanted neural recording and stimulation devices,'' IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 493-496, 2017. open in new tab
  4. J. Dong, W. Qin, and M. Wang, ''Fast multi-objective optimization of multi-parameter antenna structures based on improved BPNN surrogate model,'' IEEE Access, vol. 7, pp. 77692-77701, 2019. open in new tab
  5. X. Zhao, S. P. Yeo, and L. C. Ong, ''Planar UWB MIMO antenna with pattern diversity and isolation improvement for mobile platform based on the theory of characteristic modes,'' IEEE Trans. Antennas Propag., vol. 66, no. 1, pp. 420-425, Jan. 2018. open in new tab
  6. J. Lundgren, A. Ericsson, and D. Sjoberg, ''Design, optimization and verification of a dual band circular polarization selective structure,'' IEEE Trans. Antennas Propag., vol. 66, no. 11, pp. 6023-6032, Nov. 2018. open in new tab
  7. J.-F. Qian, F.-C. Chen, K.-R. Xiang, and Q.-X. Chu, ''Resonator-loaded multi-band microstrip slot antennas with bidirectional radiation patterns,'' IEEE Trans. Antennas Propag., vol. 67, no. 10, pp. 6661-6666, Oct. 2019. open in new tab
  8. Y.-Y. Liu and Z.-H. Tu, ''Compact differential band-notched stepped-slot UWB-MIMO antenna with common-mode suppression,'' IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 593-596, 2017. open in new tab
  9. K. Saurav, N. K. Mallat, and Y. M. M. Antar, ''A three-port polarization and pattern diversity ring antenna,'' IEEE Antennas Wireless Propag. Lett., vol. 17, no. 7, pp. 1324-1328, Jul. 2018. open in new tab
  10. R. Leyva-Hernandez, J. A. Tirado-Mendez, H. Jardon-Aguilar, R. Flores-Leal, R. Linares, and Y. Miranda, ''Reduced size elliptic UWB antenna with inscribed third iteration sierpinski triangle for on-body applications,'' Microw. Opt. Technol. Lett., vol. 59, no. 3, pp. 635-641, Mar. 2017. open in new tab
  11. G.-L. Huang, S.-G. Zhou, and T. Yuan, ''Development of a wideband and high-efficiency waveguide-based compact antenna radiator with binder- jetting technique,'' IEEE Trans. Compon., Packag., Manuf. Technol., vol. 7, no. 2, pp. 254-260, 2nd Quart., 2017. open in new tab
  12. M. S. Alam and A. M. Abbosh, ''Beam-steerable planar antenna using cir- cular disc and four PIN-controlled tapered stubs for WiMAX and WLAN applications,'' IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 980-983, 2016. open in new tab
  13. K. D. Xu, D. Li, Y. Liu, and Q. H. Liu, ''Printed quasi-yagi antennas using double dipoles and stub-loaded technique for multi-band and broadband applications,'' IEEE Access, vol. 6, pp. 31695-31702, 2018. open in new tab
  14. T. Cheng, W. Jiang, S. Gong, and Y. Yu, ''Broadband SIW cavity-backed modified dumbbell-shaped slot antenna,'' IEEE Antennas Wireless Propag. Lett., vol. 18, no. 5, pp. 936-940, May 2019. open in new tab
  15. Y. Liu, S. Wang, X. Wang, and Y. Jia, ''A differentially fed dual-polarized slot antenna with high isolation and low profile for base station applica- tion,'' IEEE Antennas Wireless Propag. Lett., vol. 18, no. 2, pp. 303-307, Feb. 2019. open in new tab
  16. Z. Niu, H. Zhang, Q. Chen, and T. Zhong, ''Isolation enhancement for 1×3 closely spaced E-plane patch antenna array using defect ground structure and metal-vias,'' IEEE Access, vol. 7, pp. 119375-119383, 2019. open in new tab
  17. T. Jhajharia, V. Tiwari, D. Yadav, S. Rawat, and D. Bhatnagar, ''Wideband circularly polarised antenna with an asymmetric meandered- shaped monopole and defected ground structure for wireless communi- cation,'' IET Microw., Antennas Propag., vol. 12, no. 9, pp. 1554-1558, Jul. 2018. open in new tab
  18. J. Yang, J. Flygare, M. Pantaleev, and B. Billade, ''Development of quadruple-ridge flared horn with spline-defined profile for band b of the wide band single pixel feed (WBSPF) advanced instrumentation pro- gramme for SKA,'' in Proc. IEEE Int. Symp. Antennas Propag. (APSURSI), Fajardo, Puerto Rico, Jun. 2016, pp. 1345-1346. open in new tab
  19. H. J. Gibson, B. Thomas, L. Rolo, M. C. Wiedner, A. E. Maestrini, and P. de Maagt, ''A novel spline-profile diagonal horn suitable for integration into THz split-block components,'' IEEE Trans. Terahertz Sci. Technol., vol. 7, no. 6, pp. 657-663, Nov. 2017. open in new tab
  20. S. Koziel and S. Ogurtsov, Simulation-Based Optimization of Antenna Arrays. Singapore: World Scientific, 2019. open in new tab
  21. G. Bilgin, V. S. Yilmaz, A. Kara, and E. Aydin, ''Comparative assessment of electromagnetic simulation tools for use in microstrip antenna design: Experimental demonstrations,'' Microw. Opt. Technol. Lett., vol. 61, no. 2, pp. 349-356, Feb. 2019. open in new tab
  22. S. Koziel and A. Pietrenko-Dabrowska, ''Variable-fidelity simulation mod- els and sparse gradient updates for cost-efficient optimization of compact antenna input characteristics,'' Sensors, vol. 19, no. 8, p. 1806, 2019. open in new tab
  23. M.-C. Tang, X. Chen, M. Li, and R. W. Ziolkowski, ''Particle swarm optimized, 3-D-printed, wideband, compact hemispherical antenna,'' IEEE Antennas Wireless Propag. Lett., vol. 17, no. 11, pp. 2031-2035, Nov. 2018. open in new tab
  24. S. Koziel and A. Bekasiewicz, ''Statistical analysis and robust design of cir- cularly polarized antennas using sequential approximate optimization,'' in Proc. 22nd Int. Microw. Radar Conf. (MIKON), Poznań, Poland, May 2018, pp. 424-427. open in new tab
  25. S. Lee, Y. Yang, K.-Y. Lee, K.-Y. Jung, and K. Hwang, ''Robust design of 3D-printed 6-18 GHz double-ridged TEM horn antenna,'' Appl. Sci., vol. 8, no. 9, p. 1582, 2018. open in new tab
  26. G. Allaire, ''A review of adjoint methods for sensitivity analysis, uncer- tainty quanti-fication, and optimization in numerical codes,'' Ingenieurs de l'Automobile, SIA, Singapore, Tech. Rep. hal-01242950, Dec. 2015, vol. 836, pp. 33-36.
  27. S. Koziel and A. Bekasiewicz, ''Fast EM-driven size reduction of antenna structures by means of adjoint sensitivities and trust regions,'' IEEE Anten- nas Wireless Propag. Lett., vol. 14, pp. 1681-1684, 2015. open in new tab
  28. Y. Zhang, N. K. Nikolova, and M. K. Meshram, ''Design optimization of planar structures using self-adjoint sensitivity analysis,'' IEEE Trans. Antennas Propag., vol. 60, no. 6, pp. 3060-3066, Jun. 2012. open in new tab
  29. A. Pietrenko-Dabrowska and S. Koziel, ''Numerically efficient algorithm for compact microwave device optimization with flexible sensitivity updat- ing scheme,'' Int. J. RF Microw. Comput.-Aided Eng., vol. 29, no. 7, Jul. 2019, Art. no. e21714. open in new tab
  30. S. Koziel and A. Pietrenko-Dabrowska, ''Reduced-cost electromagnetic- driven optimisation of antenna structures by means of trust-region gradient-search with sparse jacobian updates,'' IET Microw., Antennas Propag., vol. 13, no. 10, pp. 1646-1652, Aug. 2019. open in new tab
  31. L. Zappelli, ''Optimization procedure of four-port and six-port directional couplers based on polygon equivalent circuit,'' IEEE Trans. Microw. The- ory Techn., vol. 66, no. 10, pp. 4471-4481, Oct. 2018. open in new tab
  32. S. Koziel and S. Ogurtsov, Antenna Design by Simulation-Driven Opti- mization, Berlin, Germany: Springer, 2014. open in new tab
  33. J. C. Cervantes-González, J. E. Rayas-Sánchez, C. A. López, J. R. Camacho-Pérez, Z. Brito-Brito, and J. L. Chávez-Hurtado, ''Space mapping optimization of handset antennas considering EM effects of mobile phone components and human body,'' Int. J. RF Microw. Comput.-Aided Eng., vol. 26, no. 2, pp. 121-128, Feb. 2016. open in new tab
  34. D. Echeverria, D. Lahaye, L. Encica, E. A. Lomonova, P. W. Hemker, and A. J. A. Vandenput, ''Manifold-mapping optimization applied to linear actuator design,'' IEEE Trans. Magn., vol. 42, no. 4, pp. 1183-1186, Apr. 2006. open in new tab
  35. S. Koziel and S. D. Unnsteinsson, ''Expedited design closure of antennas by means of trust-region-based adaptive response scaling,'' IEEE Antennas Wireless Propag. Lett., vol. 17, no. 6, pp. 1099-1103, Jun. 2018. open in new tab
  36. L. Leifsson and S. Koziel, ''Surrogate modelling and optimization using shape-preserving response prediction: A review,'' Eng. Optim., vol. 48, no. 3, pp. 476-496, Mar. 2016. open in new tab
  37. B. Liu, H. Aliakbarian, Z. Ma, G. A. E. Vandenbosch, G. Gielen, and P. Excell, ''An efficient method for antenna design optimization based on evolutionary computation and machine learning techniques,'' IEEE Trans. Antennas Propag., vol. 62, no. 1, pp. 7-18, Jan. 2014. open in new tab
  38. D. He, C. Liu, T. Q. S. Quek, and H. Wang, ''Transmit antenna selection in MIMO wiretap channels: A machine learning approach,'' IEEE Wireless Commun. Lett., vol. 7, no. 4, pp. 634-637, Aug. 2018. open in new tab
  39. S. Trehan, K. T. Carlberg, and L. J. Durlofsky, ''Error modeling for surrogates of dynamical systems using machine learning,'' Int. J. Numer. Methods Eng., vol. 112, no. 12, pp. 1801-1827, Dec. 2017. open in new tab
  40. R. R. Alavi, R. Mirzavand, J. Doucette, and P. Mousavi, ''An adap- tive data acquisition and clustering technique to enhance the speed of spherical near-field antenna measurements,'' IEEE Antennas Wire- less Propag. Lett., vol. 18, no. 11, pp. 2325-2329, Nov. 2019, doi: 10. 1109/LAWP.2019.2938732. open in new tab
  41. J. E. Rayas-Sanchez and V. Gutierrez-Ayala, ''EM-based Monte Carlo analysis and yield prediction of microwave circuits using linear-input neural-output space mapping,'' IEEE Trans. Microw. Theory Techn., vol. 54, no. 12, pp. 4528-4537, Dec. 2006. open in new tab
  42. J. Du and C. Roblin, ''Stochastic surrogate models of deformable antennas based on vector spherical harmonics and polynomial chaos expansions: Application to textile antennas,'' IEEE Trans. Antennas Propag., vol. 66, no. 7, pp. 3610-3622, Jul. 2018. open in new tab
  43. B. Liu, M. O. Akinsolu, N. Ali, and R. Abd-Alhameed, ''Efficient global optimisation of microwave antennas based on a parallel surrogate model- assisted evolutionary algorithm,'' IET Microw., Antennas Propag., vol. 13, no. 2, pp. 149-155, Feb. 2019. open in new tab
  44. S. Koziel and A. Pietrenko-Dabrowska, Performance-Driven Surrogate Modeling of High-Frequency Structures. New York, NY, USA: Springer, 2020. open in new tab
  45. J. P. C. Kleijnen, ''Kriging metamodeling in simulation: A review,'' Eur. J. Oper. Res., vol. 192, no. 3, pp. 707-716, Feb. 2009. open in new tab
  46. C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. Cambridge, MA, USA: MIT Press, 2006. open in new tab
  47. A. I. J. Forrester and A. J. Keane, ''Recent advances in surrogate-based optimization,'' Prog. Aerosp. Sci., vol. 45, nos. 1-3, pp. 50-79, Jan. 2009. open in new tab
  48. S. Mishra, R. N. Yadav, and R. P. Singh, ''Directivity estimations for short dipole antenna arrays using radial basis function neural networks,'' IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1219-1222, 2015. open in new tab
  49. P. Manfredi, D. V. Ginste, I. S. Stievano, D. De Zutter, and F. G. Canavero, ''Stochastic transmission line analysis via polynomial chaos methods: An overview,'' IEEE Electromagn. Compat. Mag., vol. 6, no. 3, pp. 77-84, 2017. open in new tab
  50. X. Ma and N. Zabaras, ''An adaptive high-dimensional stochastic model representation technique for the solution of stochastic partial differ- ential equations,'' J. Comput. Phys., vol. 229, no. 10, pp. 3884-3915, May 2010. open in new tab
  51. J. Lee, G.-T. Gil, and Y. H. Lee, ''Channel estimation via orthogonal matching pursuit for hybrid MIMO systems in millimeter wave communi- cations,'' IEEE Trans. Commun., vol. 64, no. 6, pp. 2370-2386, Jun. 2016. open in new tab
  52. B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, ''Least angle regres- sion,'' Ann. Statist., vol. 32, no. 2, pp. 407-499, 2004.
  53. D. J. J. Toal and A. J. Keane, ''Efficient multipoint aerodynamic design optimization via cokriging,'' J. Aircr., vol. 48, no. 5, pp. 1685-1695, Sep. 2011. open in new tab
  54. F. Wang, P. Cachecho, W. Zhang, S. Sun, X. Li, R. Kanj, and C. Gu, ''Bayesian model fusion: Large-scale performance modeling of analog and mixed-signal circuits by reusing early-stage data,'' IEEE Trans. open in new tab
  55. Comput.-Aided Design Integr. Circuits Syst., vol. 35, no. 8, pp. 1255-1268, Aug. 2016.
  56. S. Koziel, ''Low-cost data-driven surrogate modeling of antenna structures by constrained sampling,'' IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 461-464, 2017. open in new tab
  57. S. Koziel and A. T. Sigurdsson, ''Triangulation-based constrained surro- gate modeling of antennas,'' IEEE Trans. Antennas Propag., vol. 66, no. 8, pp. 4170-4179, Aug. 2018. open in new tab
  58. S. Koziel and A. Bekasiewicz, ''On reduced-cost design-oriented con- strained surrogate modeling of antenna structures,'' IEEE Antennas Wire- less Propag. Lett., vol. 16, pp. 1618-1621, 2017. open in new tab
  59. S. Koziel, A. T. Siguresson, and S. Szczepanski, ''Uniform sampling in constrained domains for low-cost surrogate modeling of antenna input characteristics,'' IEEE Antennas Wireless Propag. Lett., vol. 17, no. 1, pp. 164-167, Jan. 2018. open in new tab
  60. S. Koziel and A. Pietrenko-Dabrowska, ''Performance-based nested sur- rogate modeling of antenna input characteristics,'' IEEE Trans. Antennas Propag., vol. 67, no. 5, pp. 2904-2912, May 2019. open in new tab
  61. Z. Liu, M. Yang, and W. Li, ''A sequential latin hypercube sampling method for metamodeling,'' in Theory, Methodology, Tools and Applica- tions for Modeling and Simulation of Complex Systems, vol. 643, L. Zhang, X. Song, and Y. Wu, Eds. Singapore: Springer, 2016, pp. 176-185. open in new tab
  62. J. Liu, Z. Han, and W. Song, ''Comparison of infill sampling criteria in kriging-based aerodynamic optimization,'' in Proc. 28th Int. Congr. Aeronaut. Sci., Brisbane, QLD, Australia, 2012, pp. 23-28.
  63. B. Beachkofski and R. Grandhi, ''Improved distributed hypercube sam- pling,'' in Proc. 43rd AIAA/ASME/ASCE/AHS/ASC Struct., Struct. Dyn., Mater. Conf., Apr. 2002, p. 1274. open in new tab
  64. K. Crombecq, E. Laermans, and T. Dhaene, ''Efficient space-filling and non-collapsing sequential design strategies for simulation-based model- ing,'' Eur. J. Oper. Res., vol. 214, no. 3, pp. 683-696, Nov. 2011. open in new tab
  65. J. Kleijnen and W. Beers, ''Application-driven sequential designs for sim- ulation experiments: Kriging metamodeling,'' J. Oper. Res. Soc., vol. 55, no. 8, pp. 876-883, 2004. open in new tab
  66. J. Kleijnen, ''Design and analysis of simulation experiments,'' in Statis- tics and Simulation. IWS 2015. Springer Proceedings in Mathematics & Statistics, vol. 231, J. Pilz, D. Rasch, V. Melas, and K. Moder, Eds. Cham, Switzerland: Springer, 2018. open in new tab
  67. S. Koziel, L. Leifsson, I. Couckuyt, and T. Dhaene, ''Reliable reduced cost modeling and design optimization of microwave filters using co-kriging,'' Int. J. Numer. Model., vol. 26, pp. 493-505, Sep. 2013. open in new tab
  68. M. Kennedy, ''Predicting the output from a complex computer code when fast approximations are available,'' Biometrika, vol. 87, no. 1, pp. 1-13, Mar. 2000. open in new tab
  69. I. Couckuyt, ''Forward and inverse surrogate modeling of computationally expensive problems,'' Ph.D. dissertation, Fac. Eng. Archit., Dept. Inf. Technol., Ghent Univ., Ghent, Belgium, 2013.
  70. A. Bekasiewicz, S. Koziel, and J. W. Bandler, ''Low-cost multi-objective design of compact microwave structures using domain patching,'' in IEEE MTT-S Int. Microw. Symp. Dig., San Francisco, CA, USA, May 2016, pp. 1-3. open in new tab
  71. S. Arlot and A. Celisse, ''A survey of cross-validation procedures for model selection,'' Statist. Surv., vol. 4, pp. 40-79, 2010. open in new tab
  72. Y.-C. Chen, S.-Y. Chen, and P. Hsu, ''Dual-band slot dipole antenna fed by a coplanar waveguide,'' in Proc. IEEE Antennas Propag. Soc. Int. Symp., Jul. 2006, pp. 3589-3592, doi: 10.1109/APS.2006.1711396. open in new tab
  73. M. Qudrat-E-Maula and L. Shafai, ''A dual band microstrip dipole antenna,'' in Proc. 16th Int. Symp. Antenna Technol. Appl. Electromagn. (ANTEM), Victoria, BC, Canada, Jul. 2014, pp. 1-2. open in new tab
Verified by:
Gdańsk University of Technology

seen 52 times

Recommended for you

Meta Tags