Optimization of Energetic Train Cooperation - Publication - Bridge of Knowledge

Search

Optimization of Energetic Train Cooperation

Abstract

In the article, possible ways of using energy recovered during regenerative braking of trains are presented. It is pointed out that the return of recovered electricity directly to the catenary and its use in the energy cooperation of vehicles can be a no-cost method (without additional infrastructure). The method of energy cooperation between trains and its main assumptions, that uses the law of conservation of energy, are described in detail. An original model is proposed which assumes optimization by controlling the train arrival time at the station within the technical time reserve. Optimization method was used metaheuristic and adapted swarm algorithm called the firefly algorithm. An exemplary simulation of the energy cooperation of trains for selected stops of a double-track railway line of the Tricity Rapid Urban Railway has been done and the obtained results are presented. Finally, in discussion and conclusions, the results were summarized and the significance of the development of the discussed method for transport rationalization was presented.

Citations

  • 2 0

    CrossRef

  • 0

    Web of Science

  • 2 6

    Scopus

Authors (3)

Cite as

Full text

download paper
downloaded 61 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Symmetry-Basel no. 11, pages 1 - 19,
ISSN: 2073-8994
Language:
English
Publication year:
2019
Bibliographic description:
Urbaniak M., Kardas-Cinal E., Jacyna M.: Optimization of Energetic Train Cooperation// Symmetry-Basel -Vol. 11,iss. 9 (2019), s.1-19
DOI:
Digital Object Identifier (open in new tab) 10.3390/sym11091175
Bibliography: test
  1. Jachimowski, R.; Szczepański, E.; Kłodawski, M.; Markowska, K.; Dąbrowski, J. Selection of a container storage strategy at the rail-road intermodal terminal as a function of minimization of the energy expenditure of transshipment devices and CO 2 emissions. Annu. Set Environ. Prot. 2018, 20, 965-988.
  2. Wasiak, M.; Jacyna-Gołda, I.; Markowska, K.; Jachimowski, R.; Kłodawski, M.; Izdebski, M. The use of a supply chain configuration model to assess the reliability of logistics processes. Eksploat. Niezawodn. 2019, 3, 367-374. [CrossRef] Symmetry 2019, 11, 1175 open in new tab
  3. Szeląg, A. Electrical power infrastructure for modern rolling stock with regard to the railway in Poland. Arch. Transp. 2017, 42, 75-83. [CrossRef] open in new tab
  4. Jacyna, M.; Szczepański, E.; Izdebski, M.; Jasiński, S.; Maciejewski, M. Characteristics of event recorders in Automatic Train Control systems. Arch. Transp. 2018, 46, 61-70. [CrossRef] open in new tab
  5. Jacyna, M.; Gołębiowski, P.; Urbaniak, M. Multi-option model of railway traffic organization including the energy recuperation. Chall. Transp. Telemat. 2016, 640, 199-210. open in new tab
  6. Jacyna-Gołda, I.; Izdebski, M.; Podviezko, A. Assessment of the efficiency of assignment of vehicles to tasks in supply chains: A case-study of a municipul company. Transport 2017, 32, 243-251. [CrossRef] open in new tab
  7. Jacyna, M.; Izdebski, M.; Szczepański, E.; Gołda, P. The task assignment of vehicles for a production company. Symmetry 2018, 11, 551. [CrossRef] open in new tab
  8. González-Gil, A.; Palacin, R.; Batty, P. Sustainable urban rail systems: Strategies and technologies for optimal management of regenerative braking energy. Energy Convers. Manag. 2013, 75, 374-388. [CrossRef] 9. González-Gil, A.; Palacin, R.; Batty, P.; Powell, J. Energy-efficient urban rail systems: Strategies for an optimal management of regenerative braking energy. In Proceedings of the Transport Research Arena 2014, Paris, France, 14-17 April 2014. open in new tab
  9. Akiyama, S.; Tsutsumi, K.; Matsuki, S. The Development of Low Floor Battery-Driven Lrv "SWIMO". Available online: www.railway-research.org/IMG/pdf/r.2.2.3.2.pdf (accessed on 1 June 2019). open in new tab
  10. Kono, Y.; Shiraki, N.; Yokoyama, H.; Furuta, R. Catenary and Storage Battery Hybrid System for Electric Railcar Series EV-E301. In Proceedings of the International Power Electronics Conference 2014, Hiroshima, Japan, 18-21 May 2014. open in new tab
  11. Batteries Included: Prototype Battery-Powered Train Carries Passengers for First Time. Available online: http://www.networkrailmediacentre.co.uk/news/batteries-included-prototype-battery-powered- train-carries-passengers-for-first-time (accessed on 1 June 2019). open in new tab
  12. Ribeiro, P.; Johnson, B.; Crow, M.; Arsoy, A.; Liu, Y. Energy storage systems for advanced power applications. IEEE Trans. Med. Imaging 2001, 12, 1744-1756. [CrossRef] open in new tab
  13. Chymera, M.; Renfrew, A.; Barnes, M. Analizing the potential of energy storage on electrified transit systems. In Proceedings of the World Congress on Railway Research-WCRR 2008, Seoul, Korea, 22 May 2008.
  14. Dominguez, M.; Cucala, A.P.; Fernandez, A.; Pecharroman, R.R.; Blanquer, J. Energy efficiency on train control-Design of metro ATO driving and impact of energy accumulation devices. In Proceedings of the World Congress on Railway Research-WCRR 2011, Lille, France, 22-26 May 2011. open in new tab
  15. Iannuzzi, D.; Tricoli, P. Metro trains equipped onboard with super-capacitors: A control technique for energy saving. In Proceedings of the SPEEDAM 2010-International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Pisa, Italy, 14-16 June 2010. open in new tab
  16. Ciccarelli, F.; Tricoli, P.; Iannuzzi, D. Control of metro-trains equipped with onboard supercapacitors for energy saving and reduction of power peak demand. Transp. Res. Part C Emerg. Technol. 2012, 24, 36-49. [CrossRef] open in new tab
  17. Allegre, A.L.; Bouscayrol, A.; Delarue, P.; Barrade, P.; Chattot, E.; El-Fassi, S. Energy storage system with supercapacitor for an innovative subway. IEEE Trans. Ind. Electron. 2010, 57, 4001-4012. [CrossRef] open in new tab
  18. Swanson, J. Light rail systems without wires? In Proceedings of the Rail Conference 2003, Chicago, IL, USA, 22-24 April 2003. open in new tab
  19. Taguchi, Y.; Terada, Y.A.; Miki, M.; Hatakeda, K.; Kimura, T. Evaluation of a Thermal Network Model for the Traction Battery of the Battery-Powered EMU. In Proceedings of the Vehicle Power and Propulsion Conference 2015, Montreal, QC, Canada, 19-22 October 2015; pp. 1-6. open in new tab
  20. Urbaniak, M.; Jacyna, M.; Kardas-Cinal, E. Metody wykorzystania energii z rekuperacji w transporcie szynowym. Tech. Transp. Szyn. 2016, 12, 355-359. (In Polish)
  21. Barrero, R.; Tackoen, X.; van Mirelo, J. Stationary or onboard energy storage systems for energy consumption reduction in a metro network. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2010, 224, 207-225. [CrossRef] open in new tab
  22. Teymourfar, R.; Asaei, B.; Iman-Eini, H.; Nejati Fard, R. Stationary super-capacitor energy storage system to save regenerative braking energy in metro line. Energy Conver. Manag. 2012, 56, 206-214. [CrossRef] open in new tab
  23. Warin, Y.; Lanselle, R.; Thiounn, M. Active substation. In Proceedings of the World Congress on Railway Research-WCRR 2011, Lille, France, 22-26 May 2011. open in new tab
  24. Ibaiondo, H.; Romo, A. Kinetic energy recovery on railway systems with feedback to the grid. In Proceedings of the World Congress on Railway Research-WCRR 2011, Lille, France, 22-26 May 2011. open in new tab
  25. Cornic, D. Efficient recovery of breaking energy through a reversible DC substation. In Proceedings of the World Congress on Railway Research-WCRR 2011, Lille, France, 22-26 May 2011. open in new tab
  26. Pazdro, P. Koncepcja ruchowej optymalizacji efektywności hamowania odzyskowego. Tech. Transp. Szyn. 2013, 1-2, 62-64. (In Polish)
  27. Czucha, J.; Karwowski, K.; Mizan, M.; Pazdro, P. Efektywność odzysku energii hamowania elektrodynamicznego w komunikacji miejskiej. Przegląd Elektrotechniczny 2004, 80, 1016-1019. (In Polish)
  28. Pena-Alcaraz, M.; Fernández, A.; Cucala, A.; Ramos, A.; Pecharromán, R. Optimal underground timetable design based on power flow for maximizing the use of regenerative-braking energy. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2012, 226, 397-408. [CrossRef] open in new tab
  29. Nasri, A.; Fekri Moghadam, M.; Mokhtari, H. Timetable optimization for maximum usage of regenerative energy of braking in electrical railway systems. In Proceedings of the SPEEDAM 2010-International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Pisa, Italy, 14-16 June 2010. open in new tab
  30. Yang, X.; Ning, B.; Li, X.; Tang, T. A Two-Objective Timetable Optimization Model in Subway Systems. IEEE Trans. Intell. Transp. Syst. 2014, 5, 1913-1921. [CrossRef] open in new tab
  31. Szeląg, A. Efektywność hamowania odzyskowego w zelektryfikowanym transporcie szynowym. Pojazdy Szynowe 2009, 4, 9-16. (In Polish)
  32. Podoski, J.; Masłek, J.; Kacprzak, J. Zasady Trakcji Elektrycznej;
  33. Wydawnictwo Komunikacji i Łączności: Warsaw, Poland, 1980. (In Polish)
  34. Su, S.; Tang, T.; Roberts, C. A Cooperative Train Control Model for Energy Saving. IEEE Intell. Transp. Syst. Soc. 2015, 16, 622-631. [CrossRef] open in new tab
  35. Su, S.; Tang, T.; Wang, Y. Evaluation of Strategies to Reducing Traction Energy Consumption of Metro Systems Using an Optimal Train Control Simulation Model. Energies 2016, 9, 105. [CrossRef] open in new tab
  36. Urbaniak, M. The Model of Railway Traffic Organization Given an Energy Recuperation. Ph.D. Thesis, Warsaw University of Technology, Faculty of Transport, Warsaw, Poland, 2018.
  37. Yang, X.S. Firefly algorithms for multimodal optimisation. Comput. Sci. 2009, 5792, 169-178. open in new tab
  38. Yang, X.S. Nature-Inspired Metaheuristic Algorithms, 2nd ed.; Luniver Press: Sunnyvale, CA, USA, 2010. open in new tab
  39. Elektryczne Zespoły Trakcyjne z Rodziny Impuls. Available online: http://www.newag.pl/oferta/elektryczne- zespoly-trakcyjne/impuls/ (accessed on 1 June 2019). (In Polish). open in new tab
  40. Timetable for PKP Szybka Kolej Miejska w Trójmieście Sp.zo.o. Available online: https://www.skm.pkp.pl/ dla-pasazera/informacje-dla-podroznych/szczegoly-informacji (accessed on 1 June 2019). (In Polish) © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Verified by:
Gdańsk University of Technology

seen 119 times

Recommended for you

Meta Tags