Personalized prediction of the secondary oocytes number after ovarian stimulation: A machine learning model based on clinical and genetic data
Abstract
Controlled ovarian stimulation is tailored to the patient based on clinical parameters but estimating the number of retrieved metaphase II (MII) oocytes is a challenge. Here, we have developed a model that takes advantage of the patient’s genetic and clinical characteristics simultaneously for predicting the stimulation outcome. Sequence variants in reproduction-related genes identified by next-generation sequencing were matched to groups of various MII oocyte counts using ranking, correspondence analysis, and self-organizing map methods. The gradient boosting machine technique was used to train models on a clinical dataset of 8,574 or a clinical-genetic dataset of 516 ovarian stimulations. The clinical-genetic model predicted the number of MII oocytes better than that based on clinical data. Anti-Müllerian hormone level and antral follicle count were the two most important predictors while a genetic feature consisting of sequence variants in the GDF9, LHCGR, FSHB, ESR1, and ESR2 genes was the third. The combined contribution of genetic features important for the prediction was over one-third of that revealed for anti-Müllerian hormone. Predictions of our clinical-genetic model accurately matched individuals’ actual outcomes preventing over- or underestimation. The genetic data upgrades the personalized prediction of ovarian stimulation outcomes, thus improving the in vitro fertilization procedure.
Citations
-
7
CrossRef
-
0
Web of Science
-
5
Scopus
Authors (10)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1371/journal.pcbi.1011020
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
PLoS Computational Biology
no. 19,
pages 1 - 18,
ISSN: 1553-7358 - Language:
- English
- Publication year:
- 2023
- Bibliographic description:
- Zieliński K., Pukszta S., Mickiewicz M., Kotlarz M., Wygocki P., Zieleń M., Drzewiecka D., Drzyzga D., Kloska A., Jakóbkiewicz-Banecka J.: Personalized prediction of the secondary oocytes number after ovarian stimulation: A machine learning model based on clinical and genetic data// PLoS Computational Biology -Vol. 19,iss. 4 (2023), s.1-18
- DOI:
- Digital Object Identifier (open in new tab) 10.1371/journal.pcbi.1011020
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 58 times
Recommended for you
Personalized prediction of the secondary oocytes number after ovarian stimulation: A machine learning model based on clinical and genetic data
- K. Zieliński,
- S. Pukszta,
- M. Mickiewicz
- + 7 authors
Deep Learning-Based, Multiclass Approach to Cancer Classification on Liquid Biopsy Data
- M. A. Jopek,
- K. Pastuszak,
- S. Cygert
- + 5 authors
A Computationally Efficient Model for Predicting Successful Memory Encoding Using Machine-Learning-based EEG Channel Selection
- K. Saboo,
- Y. Varatharajah,
- B. M. Berry
- + 11 authors
Evaluating the risk of endometriosis based on patients’ self-assessment questionnaires
- K. Zieliński,
- D. Drabczyk,
- M. Kunicki
- + 3 authors