Physics augmented classification of fNIRS signals - Publication - Bridge of Knowledge

Search

Physics augmented classification of fNIRS signals

Abstract

Background. Predictive classification favours performance over semantics. In traditional predictive classification pipelines, feature engineering is often oblivious to the underlying phenomena. Hypothesis. In applied domains such as functional Near Infrared Spectroscopy (fNIRS), the exploitation of physical knowledge may improve the discriminative quality of our observation set. Aims. Give exemplary evidence that intervening the physical observation process can augment classification. Methods. We manipulate the observation process in four ways independently. First, sampling and quantization are designed to enhance class related contrast. Second, we show how selection of optical filters affects the cross-talk in turn affecting classification. Third, we regularize the inverse problem to maximize sensitivity to any gradient that would later support the classification. And fourth, we introduce a catalyst covariate during experiment design to exarcebate response differences. Results. For each of the proposed manipulations, we show that the performance of the classification exercise is altered in some way or another. Conclusions. Exploitation of physics knowledge even before acquisition can support classification alleviating otherwise blind feature engineering. This can also enhance interpretability of the classification model.

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 2

    Scopus

Authors (6)

Cite as

Full text

full text is not available in portal

Keywords

Details

Category:
Monographic publication
Type:
rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
Title of issue:
Biosignal Processing and Classification Using Computational Learning and Intelligence strony 375 - 405
Language:
English
Publication year:
2022
Bibliographic description:
Orihuela-Espina F., Rojas-Cisneros M., Montero-Hernández S. A., Garcia Salinas J., Cuervo-Soto B., Herrera-Vega J.: Physics augmented classification of fNIRS signals// Biosignal Processing and Classification Using Computational Learning and Intelligence/ : , 2022, s.375-405
DOI:
Digital Object Identifier (open in new tab) 10.1016/b978-0-12-820125-1.00031-2
Verified by:
Gdańsk University of Technology

seen 95 times

Recommended for you

Meta Tags