Predicting Performance of Lightweight Concrete with Granulated Expanded Glass and Ash Aggregate by Means of Using Artificial Neural Networks - Publication - Bridge of Knowledge

Search

Predicting Performance of Lightweight Concrete with Granulated Expanded Glass and Ash Aggregate by Means of Using Artificial Neural Networks

Abstract

Lightweight concrete (LWC) is a group of cement composites of the defined physical, mechanical, and chemical performance. The methods of designing the composition of LWC with the assumed density and compressive strength are used most commonly. The purpose of using LWC is the reduction of the structure’s weight, as well as the reduction of thermal conductivity index. The highest possible strength, durability and low thermal conductivity of construction materials are important factors and reasons for this field’s development, which lies largely in modification of materials’ composition. Higher requirements for construction materials are related to activities aiming at environment protection. The purpose of the restrictions is the reduction of energy consumption and, as a result, the reduction of CO2 emission. To limit the scope of time-consuming and often high-cost laboratory works necessary to calibrate models used in the test methods, it is possible to apply Artificial Neural Networks (ANN) to predict any of the concrete properties. The aim of this study is to demonstrate the applicability of this tool for solving the problems, related to establishing the relation between the choice of type and quantity of lightweight aggregates and the porosity, bulk density and compressive strength of LWC. For the tests porous lightweight Granulated Expanded Glass Aggregate (GEGA) and Granulated Ash Aggregate (GAA) have been used.

Citations

  • 3 1

    CrossRef

  • 0

    Web of Science

  • 3 5

    Scopus

Cite as

Full text

download paper
downloaded 31 times
Publication version
Submitted Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Materials no. 12, pages 1 - 16,
ISSN: 1996-1944
Language:
English
Publication year:
2019
Bibliographic description:
Kurpińska M., Kułak L.: Predicting Performance of Lightweight Concrete with Granulated Expanded Glass and Ash Aggregate by Means of Using Artificial Neural Networks// Materials. -Vol. 12, iss. 12 (2019), s.1-16
DOI:
Digital Object Identifier (open in new tab) 10.3390/ma12122002
Bibliography: test
  1. Liu, S.; Wang, S.; Tang, W.; Hu, N.; Wei, J. Inhibitory Effect of Waste Glass Powder on ASR Expansion Induced by Waste Glass Aggregate Materials. Materials 2015, 8, 6849-6862. [CrossRef] [PubMed] open in new tab
  2. Jamshidi, A.; Kurumisawa, K.; Nawa, T.; Igarashi, T. Performance of pavements incorporating waste glass: The current state of the art. Renew. Sustain. Energy Rev. 2016, 64, 211-236. [CrossRef] open in new tab
  3. Sameer, H.; Weber, V.; Mostert, C.; Bringezu, S.; Fehling, E.; Wetzel, A. Environmental Assesment of Ultra-High-Performance Concrete Using Carbon. Material and Water Footprint. Materials 2019, 12, 851. [CrossRef] [PubMed] open in new tab
  4. Šeputytė-Jucikė, J.; Sinica, M. The effect of expanded glass and polystyrene waste on the properties of lightweight aggregate concrete. Eng. Struct. Technol. 2016, 8, 31-40. [CrossRef] open in new tab
  5. Sikora, P.; Horszczaruk, E.; Skoczylas, K.; Rucinska, T. Thermal properties of cement mortars containing waste glass aggregate and nanosilica. Procedia Eng. 2017, 196, 159-166. [CrossRef] open in new tab
  6. Domagała, L.; Kurzyniec, K. Modern manufactured lightweight aggregates based on industrial wastes for insulating and structural applications. In Energy Efficient, Sustainable Building Materials and Products;
  7. Hager, I., Ed.; Cracow University of Technology: Cracow, Poland, 2017; pp. 303-318.
  8. Ünal, O.; Uygunoglu, T.; Yildiz, A. Investigation of properties of low-strength lightweight concrete for thermal insulation. Build. Environ. 2007, 42, 584-590. [CrossRef] open in new tab
  9. Krishnamoorthy, R.R.; Zujip, J.A. Thermal conductivity and microstructure of concrete using recycle glass as a fine aggregate replacement. Int. J. Adv. Res. Technol. 2013, 3, 463-471.
  10. Bumanis, G.; Bajare, D.; Korjakins, A. Mechanical and thermal properties of lightweight concrete made from expanded glass. J. Sustain. Arch. Civ. Eng. 2013, 2, 26-32. [CrossRef] open in new tab
  11. Oktay, H.; Yumrutas, R.; Akpolat, A. Mechanical and thermal properties of lightweight aggregate concretes. Constr. Build. Mater. 2015, 96, 217-225. [CrossRef] open in new tab
  12. Nehdi, M.; EI Chabib, H.; EI Naggar, M.H. Predicting performance of self-compacting concrete mixtures using artificial neural networks. ACI Mater. J. 2001, 98, 394-401. open in new tab
  13. Chung, S.-Y.; Lehmann, C.; Abd Elrahman, M.; Stephan, D. Pore characteristics and their Effects on the material properties of foamed concrete evaluated using micro-CT images and numerical approaches. Appl. Sci. 2017, 7, 550. [CrossRef] open in new tab
  14. Anysz, H.; Narloch, P. Designing the Composition of Cement Stabilized Rammed Earth Using Artificial Neural Networks. Materials 2019, 12, 1396. [CrossRef] [PubMed] open in new tab
  15. Ziółkowski, P.; Niedostatkiewicz, M. Machine Learning Techniques in Concrete Mix Design. Materials 2019, 12, 1256. [CrossRef] [PubMed] open in new tab
  16. Kurpińska, M.; Ferenc, T. Effect of porosity on physical properties of lightweight cement composite with foamed glass aggregate. In Proceedings of the II International Conference of Computational Methods in Engineering Science (CMES'2017), Lublin, Poland, 23-25 November 2017. [CrossRef] open in new tab
  17. Tavakkol, S.; Alapour, F.; Kazemian, A.; Hasaninejad, A.; Ghanbari, A.; Ramezanianpour, A.A. Prediction of lightweight concrete strength by categorized regression, MLR and ANN. Comput. Concr. 2013, 12, 151-167. [CrossRef] open in new tab
  18. Vereshagin, V.I.; Sokolova, S.N. Granulated foam glass-ceramic material from zeolitic rocks. Constr. Build. Mater. 2008, 22, 999-1003. [CrossRef] open in new tab
  19. Omidimoaf, E.; Rajabi, A.M.; Abdelgader, H.S.; Kurpińska, M.; Wilde, K. Effect of coarse grain aggregate on strength parameters of two-stage concrete. Mater. Bud. 2019, 3, 1-3. [CrossRef] open in new tab
  20. Wang, J.; Hu, B.; Soon, J.H. Physical and mechanical properties of a bulk lightweight concrete with expanded poystyrene (EPS) beads and soft marine clay. Materials 2019, 12, 1662. [CrossRef] open in new tab
  21. Rumsys, D.; Spudulis, E.; Bacinskas, D.; Kaklauskas, G. Compressive Strenght and Durability Properties Structural Lightweight Concrete with Fine Expanded Class and/or Clay Aggregates. Materials 2018, 11, 2434. [CrossRef] open in new tab
  22. Oh, J.W.; Kim, J.T.; Lee, G.W. Application of ANN for Proportioning of Concrete Mixes. ACI Mater. J. 1999, 96, 61-67. open in new tab
  23. Yeh, I.C. Modeling of Strength of High-Performance Concrete Using ANNs. Cem. Concr. Res. 1998, 28, 1797-1808. [CrossRef] open in new tab
  24. Ghaboussi, J.; Garrett, J.H., Jr.; Wu, X. Knowledge-Based Modeling of Material Behavior with ANN. ASCE J. Eng. Mech. 1991, 117, 132-153. [CrossRef] open in new tab
  25. Silva, I.N.; Hernane Spatti, D.; Andrade Flauzino, R.; Liboni, L.H.B.; dos Reis Alves, S.F. Artificial Neural Networks; Springer: Berlin, Germany, 2017.
  26. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Internal Representation by Error Propagation; No. ICS-8506; open in new tab
  27. The MIT Press: Cambridge, MA, USA, 1985.
  28. Dao, D.V.; Ly, H.-B.; Trin, S.H.; Le, T.-T.; Pham, B.T. Artificial Intelligence Approaches for Prediction of Compressive Strength of Geopolymer Concrete. Materials 2019, 12, 983. [CrossRef] [PubMed] open in new tab
  29. Kurpińska, M. Properties of concrete impregnated using epoxy composition. Roads Brid. Drogi I Mosty 2011, 10, 59-80. open in new tab
  30. Nikoo, M.; Moghadam, P.T.; Sadowski, L. Prediction of concrete compressive strenght by evolutionary artificial neural networks. Adv. Mater. Sci. Eng. 2015. [CrossRef] open in new tab
  31. Chung, S.Y.; Abd Elrahman, M.; Sikora, P.; Rucinska, T.; Horszczaruk, E.; Stephan, D. Evaluation of the Effects of Crushed and Expanded Waste Glass Aggregates on the Material Properties of Lightweight Concrete Using Image-Based Approaches. Materials 2017, 10, 1354. [CrossRef] [PubMed] open in new tab
  32. Gencel, O.; Koksal, F.; Sahin, M.; Durgun, M.Y.; Lobland, H.H.; Brostow, W. Modeling of thermal conductivity of concrete with vermiculite by using artificial neural networks approaches. Exp. Heat Transf. 2013, 26, 360-383. [CrossRef] open in new tab
  33. Colangelo, F.; Messina, F.; Cioffi, R. Recycling of MSWI fly ash by means of cementitious double step cold bonding pelletization: Technological assessment for the production of lightweight artificial aggregates. J. Hazard. Mater. 2015, 299, 181-191. [CrossRef] open in new tab
  34. Kurpińska, M.; Ferenc, T. Application of lightweight cement composite with foamed glass aggregate in shell structures. Shell Struct. Theory Appl. 2018, 4, 549-552. open in new tab
  35. Ke, Y.; Beaucor, A.L.; Ortola, S.; Dumontet, H.; Cabrillac, R. Influence of volume fraction and characteristics of lightweight aggregates on the mechanical properties of concrete. Constr. Build. Mat. 2009, 23, 2821-2828. [CrossRef] open in new tab
  36. Lo, T.Y.; Tang, W.C.; Cui, H.Z. The effects of aggregate properties on lightweight concrete. Build. Environ. 2007, 42, 3025-3029. [CrossRef] open in new tab
  37. EN 197-1 Cement-Part 1: Composition, Specifications and Conformity Criteria for Common Cements. Available online: https://infostore.saiglobal.com/preview/is/en/2011/i.s.en197-1-2011.pdf?sku=1492629 (accessed on 21 June 2019). open in new tab
  38. EN 12350-2 Testing Fresh Concrete-Part 2: Slump-Test. Available online: https://infostore.saiglobal.com/ preview/98695517465.pdf?sku=870304_saig_nsai_nsai_2069434 (accessed on 21 June 2019). open in new tab
  39. BS EN 206:2013+A1:2016 Concrete. Specification, Performance, Production and Conformity. Available online: https://shop.bsigroup.com/ProductDetail/?pid=000000000030326195 (accessed on 31 December 2013). open in new tab
  40. EN 12390-1 Testing Hardened Concrete-Part 1: Shape, Dimensions and Other Requirements for Specimens and Moulds. Available online: https://standards.globalspec.com/std/1558637/EN%2012390-1 (accessed on 21 June 2019). open in new tab
  41. EN 12350-1 Testing Fresh Concrete-Part 1: Sampling. Available online: https://www.academia.edu/7806354/ Testing_fresh_concrete_-Part_1_Sampling (accessed on 21 June 2019). open in new tab
  42. EN 12390-2 Testing Hardened Concrete. Making and Curing Specimens for Strength Tests. Available online: https://infostore.saiglobal.com/preview/is/en/2009/i.s.en12390-2-2009.pdf?sku=1129708 (accessed on 21 June 2019). open in new tab
  43. EN 12390-3 Testing Hardened Concrete-Part 3: Compressive Strength of Test Specimens. Available online: https://infostore.saiglobal.com/preview/is/en/2009/i.s.en12390-3-2009%2Bac-2011.pdf?sku=1117182 (accessed on 21 June 2019). open in new tab
  44. Galushkin, A.I. Neural Networks Theory; Springer: Berlin, Germany, 2007. open in new tab
  45. Dreyfus, G. Neural Networks Methodology and Applications; Springer: Berlin, Germany, 2005. open in new tab
  46. Rutkowski, L. Computational Intelligence; Springer: Berlin, Germany, 2005.
  47. Pinkus, A. Approximation Theory of the MLP Model in Neural Networks; open in new tab
  48. Sikora, P.; Augustyniak, A.; Cendrowski, K.; Horszczaruk, E.; Rucinska, T.; Nawrotek, P.; Mijowska, E. Characterization of mechanical and bactericidal properties of cement mortars containing waste glass aggregate and nanomaterials. Materials 2016, 9, 701. [CrossRef] open in new tab
  49. Wang, J.Y.; Chia, K.S.; Liew, J.Y.R.; Zhang, M.H. Flexural performance of fiber-reinforced ultra-lightweight cement composites with low fiber content. Cem. Concr. Compos. 2013, 43, 39-47. [CrossRef] open in new tab
  50. Mehta, P.K.; Monteiro, P.J.M. Concrete: Microstructure, Properties and Materials, 4th ed.; McGraw-Hill: New York, NY, USA, 2014; pp. 317-335.
  51. Liu, X.; Chia, K.S.; Zhang, M.-H. Development of lightweight concrete with high resistance to water and chloride-ion penetration. Cem. Concr. Compos. 2010, 32, 757-766. [CrossRef] open in new tab
  52. Kristowski, A.; Grzyl, B.; Kurpińska, M.; Pszczoła, M. The rigid and flexible road pavements in terms of life cycle costs. Creat. Constr. Conf. 2018. [CrossRef] open in new tab
  53. Kralj, D. Experimental study of recycling lightweight concrete with aggregates containing expanded glass. Process Saf. Environ. Prot. 2006, 87, 267-273. [CrossRef] open in new tab
  54. Limbachiya, M.; Meddah, M.; Fotiadou, S. Performance of granulated foam glass concrete. Constr. Build. Mat. 2012, 28, 759-768. [CrossRef] open in new tab
  55. Khatib, J.M.; Shariff, S.; Negim, E.M. Effect of incorporating foamed glass on the flexural behaviour of reinforced concrete beams. World Appl. Sci. J. 2012, 19, 47-51. open in new tab
  56. Yu, Q.L.; Spiesz, P.; Brouwers, H.J.H. Development of cement-based lightweight composites-Part 1: Mix design methodology and hardened properties. Cem. Concr. Compos. 2013, 44, 17-29. [CrossRef] open in new tab
  57. Yu, R.; van Onna, D.V.; Spiesz, P.; Yu, Q.L.; Brouwers, H.J.H. Development of ultra-lightweight fibre reinforced concrete applying expanded waste glass. J. Clean. Prod. 2016, 112, 690-701. [CrossRef] open in new tab
  58. Polat, R.; Yadollahi, M.M.; Sagsoz, A.E.; Arasan, S. The correlation between aggregate shape and compressive strength of concrete: Digital image processing approach. Int. J. Struct. Civ. Eng. Res. 2013, 2, 63-80. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Verified by:
Gdańsk University of Technology

seen 131 times

Recommended for you

Meta Tags