Preparation of bicyclic β-lactam and bicyclic 1,3- oxazinone scaffolds using combined cycloaddition and metathesis processes - Publication - Bridge of Knowledge

Search

Preparation of bicyclic β-lactam and bicyclic 1,3- oxazinone scaffolds using combined cycloaddition and metathesis processes

Abstract

A simple, efficient two-step method for the preparation of heterobicyclic compounds was developed. Starting from 5-acyl or 5-carbamoyl-2,2- dimethyl-1,3-dioxa-4,5-dione bicyclic scaffolds of 1-azabicyclo[5.2.0]non- 3-en-9-one, 6,9,10,10a-tetrahydro-4H-[1,3]oxazino[3,2-a]azepin-4-one, and 6,9,10,10a-tetrahydro-2H-[1,3]oxazino[3,2-a]azepine-2,4(3H)-dione were prepared using cycloaddition of thermally generated ketenes to aldimines with unsaturated side chains, followed by metathesis. The method was applied to ring closing metathesis (RCM) of different heterocyclic substrates to demonstrate its versatility..

Citations

  • 4

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Cite as

Full text

download paper
downloaded 69 times
Publication version
Accepted or Published Version
License
Copyright (© 2018 Taylor & Francis)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
SYNTHETIC COMMUNICATIONS no. 48, pages 1793 - 1804,
ISSN: 0039-7911
Language:
English
Publication year:
2018
Bibliographic description:
Zakaszewska A., Najda-Mocarska E., Makowiec S.: Preparation of bicyclic β-lactam and bicyclic 1,3- oxazinone scaffolds using combined cycloaddition and metathesis processes// SYNTHETIC COMMUNICATIONS. -Vol. 48, nr. 14 (2018), s.1793-1804
DOI:
Digital Object Identifier (open in new tab) 10.1080/00397911.2018.1465980
Bibliography: test
  1. Dougherty, T. J.; Pucci, M. J. Antibiotic Discovery and Development, Springer: New York, 2012. (b) Morin, R. B.; Gorman, M. Chemistry and Biology of β-Lactam Antibiotics, Academic Press: New York, 1982.
  2. Torok, M. E.; Moran, E.; Cooke, F. Oxford Handbook of Infectious Diseases and Microbiology, 1 st ed., Oxford University Press, 2009. open in new tab
  3. Staudinger, H. Zur Kenntniss der Ketene. Diphenylketen. Justus Liebigs Ann. Chem. 1907, 356, 51-123. open in new tab
  4. Bruggink, A. Synthesis of β-lactam antibiotics: chemistry, biocatalysis and process integration, Kluwer Academic Publishers, 2001. open in new tab
  5. Curran, W. V.; Ross, A. A.; Lee, V. J. N-azamonobactams. 1. The synthesis of some 3-substituted N-azamonobactam derivatives. J. Antibiot. 1988, 41, 1418-1429. b) open in new tab
  6. Indelicato, J. M.; Fisher, J. W.; Pasini, C. E. Intramolecular nucleophilic amino attack in a monobactam: synthesis and stability of (2S,3S)-3-[(2R)-2-amino-2-phenylacetamido]-2- methyl-4-oxo-1-azetidine sulfo nic acid. J. Pharm. Sci. 1986, 75, 304-306. open in new tab
  7. Gupta, E. K.; Ito, M. K. Ezetimibe: the first in a novel class of selective cholesterol- absorption inhibitors. Heart Dis. 2002, 4, 399-409. b) Clader, J. W. The discovery of ezetimibe: a view from outside the receptor. J. Med. Chem. 2004, 47, 1-9. c) Rosenblum, S. B.; Huynh, T.; Afonso, A. ; Davis, H. R.; Yumibe, N.; Clader, J. W.; Burnett, D. A. Discovery of 1-(4-fluorophenyl)-(3R)-[3-(4-fluorophenyl)-(3S)-hydroxypropyl]-(4S)-(4 - hydroxyphenyl)-2-azetidinone (SCH 58235): a designed, potent, orally active inhibitor of cholesterol absorption. J. Med. Chem. 1998, 41, 973-980. 11
  8. Karlsson, S.; Sorensen, J. H.; Selection and Development of a Route for Cholesterol Absorption Inhibitor AZD4121. Org. Process Res. Dev. 2012, 16, 586-594. open in new tab
  9. Kramer, W.; Corsiero, D.; Girbig, F.; Jähne, G. Rabbit small intestine does not contain an annexin II/caveolin 1 complex as a target for 2-azetidinone cholesterol absorption inhibitors. Biochim. Biophys. Acta 2006, 1, 45-54. open in new tab
  10. Salisbury, B. G.; Davis, H. R.; Burrier, R. E.; Burnett, D. A.; Boykow, G. Caplen, M. open in new tab
  11. A.; Clemmons, A. L.; Compton, D. S.; Hoos, L. M.; McGregor, D. G.; Schnitzer-Polokoff, R.; Smith, A. A.; Weig, B. C.; Zilli, D. L.; Clader, J. W.; Sybertza, E. J. Hypocholesterolemic activity of a novel inhibitor of cholesterol absorption, SCH 48461. Atherosclerosis, 1995, 115, 45-63.
  12. Grieco, P. A; Flynn, D. L.; Zelle, R. E. Beta.-Lactam antibiotics: a formal stereocontrolled total synthesis of (.+-.)-thienamycin. J. Am. Chem. Soc. 1984, 106, 6414- 6417. (b) Kametani, T.; Chu, S. D.; Honda, T. Asymmetric Synthesis of 4-Acetoxy-3- hydroxyethylazetidin-2-one, a Key Intermediate for the Preparation of Penem and Carbapenem Antibiotics. Heterocycles 1987, 25, 241-244. (c) Ito, K.; Iida, T.; Fujita, T.; Tsjui, S. A Simple Method for the Synthesis of Amides by Use of 2,2′-Dibenzothiazolyl Disulfide as an Oxidant. Synthesis 1981, 4, 287-288. (d) Palomo, C.; Azipurua, J. M.; Urchegui. R.; Iturburu, M.; Ochoa de Retana, A.; Cuevas. C. A convenient method for .beta.- lactam formation from .beta.-amino acids using phenyl phosphorodichloridate reagent. J. Org. Chem. 1991, 56, 2244-2247.
  13. Gilman, H.; Speeter, M. The Reformatsky Reaction with Benzalaniline. J. Am. open in new tab
  14. Chem. Soc. 1943, 65, 2255-2256. (b) Ojima, I.; Habus, I.; Zhao, M.; Georg, G. I.; Jayasinghe, L.R. Efficient and practical asymmetric synthesis of the taxol C-13 side chain, N-benzoyl- (2R,3S)-3-phenylisoserine, and its analogs via chiral 3-hydroxy-4-aryl-.beta.-lactams through 12 open in new tab
  15. chiral ester enolate-imine cyclocondensation. J. Org. Chem. 1991, 56, 1681-1683. (c) Hart, D. open in new tab
  16. J.; Ha, D-C. The ester enolate-imine condensation route to .beta.-lactams. Chem. Rev. 1989, 89, 1447-1465. (d) Ojima, I.; Habus, I. Asymmetric synthesis of β-lactams by chiral ester enolate -imine condensation. Tetrahedron Lett. 1990, 31, 4289-4292. (e) Ojima, I.; Habus, I.; Zhao, M.; Zucco, M.; Park, Y.; Sun, C.; Brigaud, T. New and efficient approaches to the semisynthesis of taxol and its C-13 side chain analogs by means of β-lactam synthon method. Tetrahedron 1992, 48, 6985-7012. (f) Ojima, I.; Habus, I.; Zhao, M. Efficient and practical asymmetric synthesis of the taxol C-13 side chain, N-benzoyl-(2R,3S)-3-phenylisoserine, and its analogs via chiral 3-hydroxy-4-aryl-.beta.-lactams through chiral ester enolate-imine cyclocondensation. J. Org. Chem. 1991, 56, 1681-1683. (g) Ojima, I.; Slater, J. S.; Kuduk, S.
  17. D.; Takeuchi, C. S.; Gimi, R. H.; Sun, C. M.; Park, Y. H.; Pera, P.; Veith, J. M.; Bernacki, R.
  18. J. Syntheses and Structure−Activity Relationships of Taxoids Derived from 14β-Hydroxy-10- deacetylbaccatin III J. Med. Chem. 1997, 40, 267-278.
  19. Kinugasa, M.; Hashimot, S. The reactions of copper(I) phenylacetylide with nitrones. J. Chem. Soc. Chem. Commun. 1972, 8, 466-467. (b) Stecko, S.; Furman, B.; Chmielewski, M. Kinugasa reaction: an 'ugly duckling' of β-lactam chemistry Tetrahedron 2014, 70, 7817-7844.
  20. Chmielewski, M.; Kałuza, Z.; Abramski, W.; Bełzacki C. Stereocontrolled entry to 1- oxapenams and 1-oxacephems from carbohydrates. Tetrahedron Lett. 1987, 28, 3035-3038. open in new tab
  21. Kamath, A.; Ojima, I. Advances in the chemistry of β-lactam and its medicinal applications. Tetrahedron 2012, 68, 10640-10664. (b) Mendez, L.; Mata, E. G. Synthesis of Multicyclic β-Lactam Derivatives via Solid-Phase-Generated Ketenes. J. Comb. Chem. 2010, 12, 810-813. (c) Jiao, L.; Zhang, Q.; Liang, Y.; Zhang, S.; Xu, J. A Versatile Method for the Synthesis of 3-Alkoxycarbonyl β-Lactam Derivatives J. Org. Chem. 2006, 71, 815-818. (d) 13
  22. Xu, J. Synthesis of β-lactams with π electron-withdrawing substituents. Tetrahedron Synthesis of β-lactams with π electron-withdrawing substituents. 2012, 68, 10696-10747. (e) open in new tab
  23. Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Ferraris, D.; Lectka, T. The Development of the First Catalyzed Reaction of Ketenes and Imines: Catalytic, Asymmetric Synthesis of β- open in new tab
  24. Lactams. J. Am. Chem. Soc. 2002, 124, 6626-6635. (e) McKittrick, B. A.; Ma, K.; Huie, K.; Yumibe, N.; Davis, H.; Clader, J. W.; Czarnecki, M.; McPhail A. T. Synthesis of C3
  25. Heteroatom-Substituted Azetidinones That Display Potent Cholesterol Absorption Inhibitory Activity. J. Med. Chem. 1998, 41, 752-759. (f) Li, B.; Wang, Y.; Du, D. M.; Xu, J. Notable and Obvious Ketene Substituent-Dependent Effect of Temperature on the Stereoselectivity in the Staudinger Reaction. J. Org. Chem. 2007, 72, 990-997. (g) Nahmany, M.; Melman, A. Simple Approach to β-Lactam Derivatives from N-Acylimidazoles. J. Org. Chem. 2006, 71, 5804-5806.
  26. Janikowska, K.; Pawelska, P.; Makowiec, S. One-Step Synthesis of β-Lactams with Retro-Amide Side Chain. Synthesis, 2011, 1, 69-72. (b) Zakaszewska, A.; Najda, E.; Makowiec, S. The stereoselective formation of β-lactams with acyl ketenes generated from 5- acyl-Meldrum's acids. New. J. Chem. 2016, 40, 6546-6549. (c) Zakaszewska, A.; Najda-
  27. Mocarska, E.; Makowiec, S.; Evidence for an umpolung type of [2+2] cycloaddition of 2- carbamoyl ketenes. New. J. Chem. 2017, 41, 6067-6070. (d) Zakaszewska, A.; Najda-
  28. Mocarska, E.; Makowiec, S. A new approach to the stereoselective synthesis of trans-3- carbamoyl-β-lactam moieties New. J. Chem. 2017, 41, 2479-2489.
  29. Yamamoto, Y.; Watanabe, Y. 1,3-Oxazines and Related Compounds. XIV. Facile Synthesis of 2,3,6-Trisubstituted 2,3-Dihydro-1,3-oxazine-5-carboxylic Acids and 1,4- Disubstituted 3-Acyl-β-lactams from Acyl Meldrum's Acids and Schiff Bases Chem. Pharm. Bull. 1987, 35, 1871-1878. open in new tab
  30. Emtenäs, H.; Soto, G.; Hultgren, S. J.; Marshall, G. R.; Almqvist, F. Stereoselective synthesis of optically active beta-lactams, potential inhibitors of pilus assembly in pathogenic bacteria. Org. Lett. 2000, 2, 2065-2067. open in new tab
  31. Pemberton, N.; Emtenäs, H.; Boström, D.; Domaille, P. J.; Greenberg, W. A.; Levin, open in new tab
  32. M. D.; Zhu, Z.; Almqvist, F. Cycloaddition of delta2-thiazolines and acyl ketenes under acidic conditions results in bicyclic 1,3-oxazinones and not 6-acylpenams as earlier reported. Org. open in new tab
  33. Lett. 2005, 7, 1019-1021.
  34. Emtenäs, H.; Alderin, L.; Almqvist, F. An enantioselective ketene-imine cycloaddition method for synthesis of substituted ring-fused 2-pyridinones. J. Org. Chem. 2001, 66, 6756-6761. (b) Pemberton, N.; Aberg, V.; Almstesdt, H.; Westermark, A.; Almqvist, F. Microwave-assisted synthesis of highly substituted aminomethylated 2- pyridones. J. Org. Chem. 2004, 69, 7830-7835. (c) Emtenäs, H.; Carlsson, M.; Pinkner, S. J.; Hultgren S. J.; Almqvist, F. Stereoselective synthesis of optically active bicyclic beta-lactam carboxylic acids that target pilus biogenesis in pathogenic bacteria. Org. Biomol. Chem. 2003, 1, 1308-1314. (d) Chorell, E.; Pinkner, J. S.; Phan, G.; Edvinsson, S.; Buelens, F.; Remaut, H.; Waksman, G.; Hultgren, S. J.; Almqvist, F. Design and Synthesis of C-2 Substituted Thiazolo and Dihydrothiazolo Ring-Fused 2-Pyridones: Pilicides with Increased Antivirulence Activity. J. Med. Chem. 2010, 53, 5690-5695. (e) Emtenäs, H.; Pinkner, S. J.; Jones, M. J.; Jakobsson, L.; Hultgren, S. J.; Almqvist, F. Functionalization of bicyclic 2- pyridones targeting pilus biogenesis in uropathogenic Escherichia coli. Tetrahedron Lett. 2007, 48, 4543-4546.
  35. Yamamoto, Y.; Watanabe, Y.; Ohnishi, S. 1, 3-Oxazines and Related Compounds. open in new tab
  36. XIII. Reaction of Acyl Meldrum's Acids with Schiff Bases Giving 2, 3-Disubstituted 5-Acy1- 3, 4, 5, 6-tetrahydro-2H-1, 3-oxazine-4, 6-diones and 2, 3, 6-Trisubstituted 2, 3-Dihydro-1, 3- 15 open in new tab
  37. oxazin-4-ones. Chem. Pharm. Bull. 1987, 35, 1860-1870. (b) Makowiec, S.; Najda, E.; Janikowska, K. Thermal Decomposition of Carbamoyl Meldrum's Acids: A Starting Point for the Preparation of 1,3-Oxazine Derivatives. J. Heterocycl. Chem. 2015, 52, 205-210. open in new tab
  38. Punda, P.; Makowiec, S. One-Step Formation of N-Alkenyl-malonamides and N- open in new tab
  39. Alkenyl-thiomalonamides from Carbamoyl Meldrum's Acids. Synth. Commun. 2013, 43, 1362-1367. open in new tab
  40. De Kimpe, N.; De Smaele, D.; Hofkens, A.; Dejaegher, Y.; Kesteleyn, B. Synthesis of 3-alkenylamines, 4-alkenylamines and 3-allenylamines via a transamination procedure. Tetrahedron 1997, 53, 10803-10816. (b) Smith, J. K.; Bergbreiter, D. E.; Newcomb, M. Formation and isomerization of 2-azaallyllithium reagents in deprotonations of N-benzyl ketimines containing .alpha.-protons. J. Org. Chem. 1985, 50, 4549-4553. open in new tab
  41. Tarling, C. A.; Holmes, A. B.; Markwell, R. E.; Pearson, N. D.; β-, γ-and δ- Lactams as conformational constraints in ring-closing metathesis. J. Chem. Soc., Perkin Trans. 1 1999, 1695-1702. (b) Barrett, A. G. M.; Baugh, S. P. D.; Braddock, D. C.; Flack, K.; Gibson, V. C.; Procopiou, P. A. Enyne metathesis for the facile synthesis of highly functionalisednovel bicyclic β-lactams. Chem. Commun. 1997, 15, 1375-1376. (c) Barrett, A.
  42. G. M.; Ahmed, M.; Baker, S. P.; Baugh, S. P. D.; Braddock, D. C.; Procopiou, P. A.; White, A. J. P.; Williams, D. J. Tandem Ireland−Claisen Rearrangement Ring-Closing Alkene Metathesis in the Construction of Bicyclic β-Lactam Carboxylic Esters. J. Org. Chem. 2000, 65, 3716-3721. (d) Watson, K. D.; Carosso, S.; Miller, M. J. New and Concise Syntheses of the Bicyclic Oxamazin Core Using an Intramolecular Nitroso Diels-Alder Reaction and Ring- Closing Olefin Metathesis. Org. Lett. 2013, 15, 358-361. (e) Desroy, N.; Robert-Peillard, F.; Toueg, J.; Duboc, R.; Hénaut, Ch.; Rager, M-N.; Savignac, M.; Genêt, J-P. An Efficient Route to 4/5/6 Polycyclic β-Lactams. Eur. J. Org. Chem. 2004, 23, 4840-4849. (f) Woźnica, 16
  43. M.; Masnyk, M.; Stecko, S.; Mames, A.; Furman, B.; Chmielewski, M.; Frelek, J.
  44. Structure−Chiroptical Properties Relationship of Carbapenams by Experiment and Theory. J. Org. Chem. 2010, 75, 7219-7226.
  45. Katz, T.J.; Sivavec, T. M. Metal-catalyzed rearrangement of alkene-alkynes and the stereochemistry of metallacyclobutene ring opening. J. Am. Chem. Soc. 1985, 107, 737- open in new tab
  46. Kim, S. H.; Bowden, N.; Grubbs, R. H. Catalytic Ring Closing Metathesis of Dienynes: Construction of Fused Bicyclic Rings. J. Am. Chem. Soc. 1994, 116, 10801-10802. open in new tab
  47. Stragies, R.; Schuster, M.; Blechert, S. A Crossed Yne-Ene Metathesis Showing Atom Economy. Angew. Chem., Int. Ed. 1997, 36, 2518-2520. open in new tab
  48. Boyer, N.; Gloanec, P.; Nanteuil, G.; Jubaulta, P.; Quiriona, J. Ch. Chemoselective and stereoselective synthesis of gem-difluoro-β-aminoesters or gem-difluoro-β-lactams from ethylbromodifluoroacetate and imines during Reformatsky reaction. Tetrahedron 2007, 63, 12352-12366. open in new tab
Verified by:
Gdańsk University of Technology

seen 93 times

Recommended for you

Meta Tags