Reduced-Cost Microwave Design Closure by Multi-Resolution EM Simulations and Knowledge-Based Model Management - Publication - Bridge of Knowledge

Search

Reduced-Cost Microwave Design Closure by Multi-Resolution EM Simulations and Knowledge-Based Model Management

Abstract

Parameter adjustment through numerical optimization has become a commonplace of contemporary microwave engineering. Although circuit theory methods are ubiquitous in the development of microwave components, the initial designs obtained with such tools have to be further tuned to improve the system performance. This is particularly pertinent to miniaturized structures, where the cross-coupling effects cannot be adequately accounted for using equivalent networks. For the sake of reliability, design closure is normally performed using full-wave electromagnetic (EM) simulation models, which entails considerable computational expenses, often impractically excessive. Available mitigation techniques include acceleration of the conventional (e.g., gradient-based) routines using adjoint sensitivities or sparse sensitivity updates, surrogate-assisted and machine learning algorithms, the latter often combined with nature-inspired procedures. Another alternative is the employment of variable-fidelity simulations (e.g., space mapping, co-kriging), which is most often limited to two levels of accuracy (coarse/fine). This work discusses an EM model management approach coupled with trust-region gradient-based routine, which exploits problem-specific knowledge for continuous (multi-level) modification of the discretization density of the microwave structure at hand in the course of the optimization run. The optimization process is launched at the lowest discretization level, thereby allowing for low-cost exploitation of the knowledge about the device under study. Subsequently, based on the convergence indicators, the model fidelity is gradually increased to ensure reliability. The simulation fidelity selection is governed by the algorithm convergence indicators. Computational speedup is achieved by maintaining low resolution in the initial stages of the optimization run, whereas design quality is secured by eventually switching to the high-fidelity model when close to concluding the process. Numerical verification is carried out using two microstrip circuits, a dual-band power divider and a dual-band branch-line coupler, with the average savings of almost sixty percent when compared to single-fidelity optimization.

Citations

  • 8

    CrossRef

  • 0

    Web of Science

  • 8

    Scopus

Cite as

Full text

download paper
downloaded 29 times
Publication version
Accepted or Published Version
DOI:
Digital Object Identifier (open in new tab) 10.1109/ACCESS.2021.3105811
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
IEEE Access no. 9, pages 116326 - 116337,
ISSN: 2169-3536
Language:
English
Publication year:
2021
Bibliographic description:
Kozieł S., Pietrenko-Dąbrowska A., Płotka P.: Reduced-Cost Microwave Design Closure by Multi-Resolution EM Simulations and Knowledge-Based Model Management// IEEE Access -Vol. 9, (2021), s.116326-116337
DOI:
Digital Object Identifier (open in new tab) 10.1109/access.2021.3105811
Verified by:
Gdańsk University of Technology

seen 72 times

Recommended for you

Meta Tags