Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3 - Publication - MOST Wiedzy

Search

Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3

Abstract

In order to achieve the highest performance of organometal trihalide perovskite solar cells, it is required to recognize the dominant mechanisms which play a key role in a perovskite material. In the following studies, we have focused on the interfacial recombination between the hole transporting layer (HTL) and the perovskite CH3NH3PbI3 in solar cell devices with p–i–n architecture. It has been shown that Cu:NiOx : used as HTL drastically decreases a short–circuit photocurrent (Jsc) and an open–circuit voltage (Voc). However, we have found that an addition of PTAA thin layer improves cells quality and, as a consequence, the efficiency of such solar cells increases by 2%. Here, we explain both Jsc and Voc losses with a theory of the “dead layer” of perovskite material where a very high surface recombination occurs. We demonstrate the numerical and experimental studies by the means of series detailed analyses to get in–depth understanding of the physical processes behind it. Using a drift–diffusion model, it is shown that the presence of a parasitic recombination layer influences mostly the current distribution in the simulated samples explaining Jsc and Voc losses. The following results could be useful for improving the quality of perovskite solar cells.

Citations

  • 5

    CrossRef

  • 4

    Web of Science

  • 3

    Scopus

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Nano Energy no. 67, pages 1 - 11,
ISSN: 2211-2855
Language:
English
Publication year:
2020
Bibliographic description:
Głowienka D., Zhang D., Di Giacomo F., Mehrdad N., Veenstra S., Szmytkowski J., Yulia G.: Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3// Nano Energy -Vol. 67, (2020), s.1-11
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.nanoen.2019.104186
Bibliography: test
  1. National Renewable Energy Laboratory (NREL), Chart of best research-cell efficiencies. https://www.nrel.gov/pv/assets/images/efficiency-chart.png, 2, 22, 2019. open in new tab
  2. L.M. Herz, Charge-carrier dynamics in organic-inorganic metal halide perovskites, Annu. Rev. Phys. Chem. 67 (1) (2016) 65-89. open in new tab
  3. T. Leijtens, S.D. Stranks, G.E. Eperon, R. Lindblad, E.M.J. Johansson, I. J. McPherson, H. Rensmo, J.M. Ball, M.M. Lee, H.J. Snaith, Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility, ACS Nano 8 (7) (2014) 7147-7155. open in new tab
  4. A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J.T.-W. Wang, S.D. Stranks, H. J. Snaith, R.J. Nicholas, Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites, Nat. Phys. 11 (7) (2015) 582-587. open in new tab
  5. Y.M. Wang, S. Bai, L. Cheng, N.N. Wang, J.P. Wang, F. Gao, W. Huang, High- efficiency flexible solar cells based on organometal halide perovskites, Adv. Mater. 28 (22) (2016) 4532-4540. open in new tab
  6. W.E.I. Sha, X. Ren, L. Chen, W.C.H. Choy, The efficiency limit of CH 3 NH 3 PbI 3 perovskite solar cells, Appl. Phys. Lett. 106 (22) (2015) 221104. open in new tab
  7. D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu, J. Feng, X. Ren, G. Fang, S. Priya, S. F. Liu, High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed s , Nat. Commun. 9 (1) (2018) 3239. open in new tab
  8. T.S. Sherkar, C. Momblona, L. Gil-Escrig, J. � Avila, M. Sessolo, H.J. Bolink, L.J. open in new tab
  9. A. Koster, Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions, ACS Energy Lett 2 (5) (2017) 1214-1222. open in new tab
  10. G.-J.A.H. Wetzelaer, M. Scheepers, A.M. Sempere, C. Momblona, J. � Avila, H. open in new tab
  11. J. Bolink, Trap-assisted non-radiative recombination in organic-inorganic perovskite solar cells, Adv. Mater. 27 (11) (2015) 1837-1841.
  12. Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong, Y. Deng, Y. Yuan, H. Wei, M. Wang, A. Gruverman, J. Shield, J. Huang, Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films, Energy Environ. Sci. 9 (2016) 1752-1759. open in new tab
  13. X. Wu, M.T. Trinh, D. Niesner, H. Zhu, Z. Norman, J.S. Owen, O. Yaffe, B. J. Kudisch, X.-Y. Zhu, Trap states in lead iodide perovskites, J. Am. Chem. Soc. 137 (5) (2015) 2089-2096. open in new tab
  14. T.S. Sherkar, C. Momblona, L. Gil-Escrig, H.J. Bolink, L.J.A. Koster, Improving perovskite solar cells: insights from a validated device model, Adv. Energy Mater. 7 (13) (2017) 1602432. open in new tab
  15. A.B. Sproul, Dimensionless solution of the equation describing the effect of surface recombination on carrier decay in semiconductors, J. Appl. Phys. 76 (5) (1994) 2851-2854. open in new tab
  16. N.J. Halas, J. Bokor, Surface recombination on the Si(111) 2�1 surface, Phys. Rev. Lett. 62 (1989) 1679-1682. open in new tab
  17. X. Wen, W. Chen, J. Yang, Q. Ou, T. Yang, C. Zhou, H. Lin, Z. Wang, Y. Zhang, G. Conibeer, Q. Bao, B. Jia, D.J. Moss, Role of surface recombination in halide perovskite nanoplatelets, ACS Appl. Mater. Interfaces 10 (37) (2018) 31586-31593. open in new tab
  18. J. Wang, W. Fu, S. Jariwala, I. Sinha, A.K.-Y. Jen, D.S. Ginger, Reducing surface recombination velocities at the electrical contacts will improve perovskite photovoltaics, ACS Energy Lett 4 (1) (2019) 222-227. open in new tab
  19. J. Idígoras, L. Contreras-Bernal, J.M. Cave, N.E. Courtier, A. Barranco, A. Borras, J. R. S� anchez-Valencia, J.A. Anta, A.B. Walker, The role of surface recombination on the performance of perovskite solar cells: effect of morphology and crystalline phase of TiO 2 contact, Adv. Mater. Interfaces 5 (21) (2018) 1801076. open in new tab
  20. A. Nakane, H. Tampo, M. Tamakoshi, S. Fujimoto, K.M. Kim, S. Kim, H. Shibata, S. Niki, H. Fujiwara, Quantitative determination of optical and recombination losses in thin-film photovoltaic devices based on external quantum efficiency analysis, J. Appl. Phys. 120 (6) (2016), 064505. open in new tab
  21. C.J. Flynn, S.M. McCullough, L. Li, C.L. Donley, Y. Kanai, J.F. Cahoon, Passivation of nickel vacancy defects in nickel oxide solar cells by targeted atomic deposition of boron, J. Phys. Chem. C 120 (30) (2016) 16568-16576. open in new tab
  22. S. Olthof, K. Meerholz, Substrate-dependent electronic structure and film formation of MAPbI 3 perovskites, Sci. Rep. 7 (2017) 40267. open in new tab
  23. Y. Cheng, M. Li, X. Liu, S.H. Cheung, H.T. Chandran, H.-W. Li, X. Xu, Y.-M. Xie, S. K. So, H.-L. Yip, S.-W. Tsang, Impact of surface dipole in niox on the crystallization and photovoltaic performance of organometal halide perovskite solar cells, Nano Energy 61 (2019) 496-504. open in new tab
  24. P. Cui, P. Fu, D. Wei, M. Li, D. Song, X. Yue, Y. Li, Z. Zhang, Y. Li, J.M. Mbengue, Reduced surface defects of organometallic perovskite by thermal annealing for highly efficient perovskite solar cells, RSC Adv. 5 (2015) 75622-75629. open in new tab
  25. H. Zhu, B. Huang, S. Wu, Z. Xiong, J. Li, W. Chen, Facile surface modification of CH 3 NH 3 PbI 3 films leading to simultaneously improved efficiency and stability of inverted perovskite solar cells, J. Mater. Chem. A 6 (2018) 6255-6264. open in new tab
  26. X. He, Y. Bai, H. Chen, X. Zheng, S. Yang, High performance perovskite solar cells through surface modification, mixed solvent engineering and nanobowl-assisted light harvesting, MRS Adv. 1 (47) (2016) 3175-3184. open in new tab
  27. E.Y. Tiguntseva, I.N. Saraeva, S.I. Kudryashov, E.V. Ushakova, F.E. Komissarenko, A.R. Ishteev, A.N. Tsypkin, R. Haroldson, V.A. Milichko, D.A. Zuev, S.V. Makarov, A.A. Zakhidov, Laser post-processing of halide perovskites for enhanced photoluminescence and absorbance, J. Phys. Conf. Ser. 917 (6) (2017), 062002. open in new tab
  28. D. Głowienka, J. Szmytkowski, Numerical modeling of exciton impact in two crystalographic phases of the organo-lead halide perovskite (CH 3 NH 3 PbI 3 ) solar cell, Semicond. Sci. Technol. 34 (3) (2019), 035018. open in new tab
  29. P. Calado, A.M. Telford, D. Bryant, X. Li, J. Nelson, B.C. O'Regan, P.R.F. Barnes, Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis, Nat. Commun. 7 (2016) 13831. open in new tab
  30. S. Van Reenen, M. Kemerink, H.J. Snaith, Modeling anomalous hysteresis in perovskite solar cells, J. Phys. Chem. Lett. 6 (19) (2015) 3808-3814. open in new tab
  31. X. Ren, Z. Wang, W.E. Sha, W.C. Choy, Exploring the way to approach the efficiency limit of perovskite solar cells by drift-diffusion model, ACS Photonics 4 (4) (2017) 934-942. open in new tab
  32. G. Richardson, S. O'Kane, R.G. Niemann, T. Peltola, J.M. Foster, P.J. Cameron, A. Walker, Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells? Energy Environ. Sci. 9 (2016) 1476-1485. open in new tab
  33. Y. Zhou, A. Gray-Weale, A numerical model for charge transport and energy convention of perovskite solar cells, Phys. Chem. Chem. Phys. 18 (2015) 4476-4486. open in new tab
  34. D. Walter, A. Fell, Y. Wu, T. Duong, C. Barugkin, N. Wu, T. White, K. Weber, Transient photovoltage in perovskite solar cells: interaction of trap-mediated recombination and migration of multiple ionic species, J. Phys. Chem. C 122 (21) (2018) 11270-11281. open in new tab
  35. Z.S. Wang, W.E.I. Sha, W.C.H. Choy, Exciton delocalization incorporated drift- diffusion model for bulk-heterojunction organic solar cells, J. Appl. Phys. 120 (21) (2016) 213101. open in new tab
  36. M. Lundstrom, R. Schuelke, Modeling semiconductor heterojunctions in equilibrium, Solid State Electron. 25 (8) (1982) 683-691. open in new tab
  37. M.S. Lundstrom, R.J. Schuelke, Numerical analysis of heterostructure semiconductor devices, IEEE Trans. Electron Dev. 30 (9) (1983) 1151-1159. open in new tab
  38. M. Gruber, B. Stickler, G. Trimmel, F. Schurrer, K. Zojer, Impact of energy alignment and morphology on the efficiency in inorganic-organic hybrid solar cells, Org. Electron. 11 (12) (2010) 1999-2011. open in new tab
  39. Q. Lin, A. Armin, R.C.R. Nagiri, P.L. Burn, P. Meredith, Electro-optics of perovskite solar cells, Nat. Photonics 9 (2) (2015) 106-112. open in new tab
  40. N. Onoda-Yamamuro, T. Matsuo, H. Suga, Dielectric study of CH 3 NH 3 PbX 3 (X ¼ Cl, Br, I), J. Phys. Chem. Solids 53 (7) (1992) 935-939. open in new tab
  41. B. Maynard, Q. Long, E.A. Schiff, M. Yang, K. Zhu, R. Kottokkaran, H. Abbas, V. L. Dalal, Electron and hole drift mobility measurements on methylammonium lead iodide perovskite solar cells, Appl. Phys. Lett. 108 (17) (2016) 173505. open in new tab
  42. D. Kiermasch, P. Rieder, K. Tvingstedt, A. Baumann, V. Dyakonov, Improved charge carrier lifetime in planar perovskite solar cells by bromine doping, Sci. Rep. 6 (2016) 1-7. open in new tab
  43. J.G. Simmons, G.W. Taylor, Nonequilibrium steady-state statistics and associated effects for insulators and semiconductors containing an arbitrary distribution of traps, Phys. Rev. B 4 (1971) 502-511. open in new tab
  44. R.L. Milot, G.E. Eperon, H.J. Snaith, M.B. Johnston, L.M. Herz, Temperature- dependent charge-carrier dynamics in CH 3 NH 3 PbI 3 perovskite thin films, Adv. Funct. Mater. 25 (39) (2015) 6218-6227. open in new tab
  45. X. Sun, C. Zhang, J. Chang, H. Yang, H. Xi, G. Lu, D. Chen, Z. Lin, X. Lu, J. Zhang, Y. Hao, Mixed-solvent-vapor annealing of perovskite for photovoltaic device efficiency enhancement, Nano Energy 28 (2016) 417-425. open in new tab
  46. T. Sakurai, S. Wang, S. Toyoshima, K. Akimoto, Role of electrode buffer layers in organic solar cells, in: 2013 International Renewable and Sustainable Energy Conference (IRSEC), IEEE, 2013, pp. 46-48. open in new tab
  47. G. Garcia-Belmonte, A. Munar, E.M. Barea, J. Bisquert, I. Ugarte, R. Pacios, Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy, Org. Electron. 9 (5) (2008) 847-851. open in new tab
  48. R.C.I. MacKenzie, T. Kirchartz, G.F.A. Dibb, J. Nelson, Modeling nongeminate recombination in P3HT:PCBM solar cells, J. Phys. Chem. C 115 (19) (2011) 9806-9813. open in new tab
  49. D.B. Khadka, Y. Shirai, M. Yanagida, J.W. Ryan, K. Miyano, Exploring the effects of interfacial carrier transport layers on device performance and optoelectronic properties of planar perovskite solar cells, J. Mater. Chem. C 5 (2017) 8819-8827. open in new tab
  50. G. Ju� ska, K. Genevi� cius, N. Nekra� sas, G. Sliau� zys, G. Dennler, Trimolecular recombination in polythiophene: fullerene bulk heterojunction solar cells, Appl. Phys. Lett. 93 (14) (2008) 143303.
  51. K. Yao, F. Li, Q. He, X. Wang, Y. Jiang, H. Huang, A.K.-Y. Jen, A copper-doped nickel oxide bilayer for enhancing efficiency and stability of hysteresis-free inverted mesoporous perovskite solar cells, Nano Energy 40 (2017) 155-162. open in new tab
  52. S. Yue, K. Liu, R. Xu, M. Li, M. Azam, K. Ren, J. Liu, Y. Sun, Z. Wang, D. Cao, X. Yan, S. Qu, Y. Lei, Z. Wang, Efficacious engineering on charge extraction for realizing highly efficient perovskite solar cells, Energy Environ. Sci. 10 (2017) 2570-2578. open in new tab
  53. G. Natu, P. Hasin, Z. Huang, Z. Ji, M. He, Y. Wu, Valence band-edge engineering of nickel oxide nanoparticles via cobalt doping for application in p-type dye- sensitized solar cells, ACS Appl. Mater. Interfaces 4 (11) (2012) 5922-5929. open in new tab
  54. Q. He, K. Yao, X. Wang, X. Xia, S. Leng, F. Li, Room-temperature and solution- processable Cu-doped nickel oxide nanoparticles for efficient hole-transport layers of flexible large-area perovskite solar cells, ACS Appl. Mater. Interfaces 9 (48) (2017) 41887-41897. open in new tab
  55. C. Zhu, X. Niu, Y. Fu, N. Li, C. Hu, Y. Chen, X. He, G. Na, P. Liu, H. Zai, Y. Ge, Y. Lu, X. Ke, Y. Bai, S. Yang, P. Chen, Y. Li, M. Sui, L. Zhang, H. Zhou, Q. Chen, Strain engineering in perovskite solar cells and its impacts on carrier dynamics, Nat. Commun. 10 (1) (2019) 815. open in new tab
  56. D. Głowienka, T. Miruszewski, J. Szmytkowski, The domination of ionic conductivity in tetragonal phase of the organometal halide perovskite CH 3 NH 3 PbI 3 x Cl x , Solid State Sci. 82 (2018) 19-23. open in new tab
  57. D. Liu, M.K. Gangishetty, T.L. Kelly, Effect of CH 3 NH 3 PbI 3 thickness on device efficiency in planar heterojunction perovskite solar cells, J. Mater. Chem. A 2 (2014) 19873-19881. open in new tab
  58. Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, J. Huang, Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process, Energy Environ. Sci. 7 (2014) 2359-2365. open in new tab
  59. I. Levine, P.K. Nayak, J.T.-W. Wang, N. Sakai, S. Van Reenen, T.M. Brenner, S. Mukhopadhyay, H.J. Snaith, G. Hodes, D. Cahen, Interface-dependent ion migration/accumulation controls hysteresis in MAPbI 3 solar cells, J. Phys. Chem. C 120 (30) (2016) 16399-16411. open in new tab
  60. L.A.A. Pettersson, L.S. Roman, O. Ingan€ as, Modeling photocurrent action spectra of photovoltaic devices based on organic thin films, J. Appl. Phys. 86 (1) (1999) 487-496. open in new tab
  61. G.F. Burkhard, E.T. Hoke, M.D. McGehee, Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells, Adv. Mater. 22 (30) (2010) 3293-3297. open in new tab
  62. M. Liu, M. Endo, A. Shimazaki, A. Wakamiya, Y. Tachibana, Light intensity dependence of performance of lead halide perovskite solar cells, J. Photopolym. Sci. Technol. 30 (5) (2017) 577-582. open in new tab
  63. A.K.K. Kyaw, D.H. Wang, V. Gupta, W.L. Leong, L. Ke, G.C. Bazan, A.J. Heeger, Intensity dependence of current-voltage characteristics and recombination in high- efficiency solution-processed small-molecule solar cells, ACS Nano 7 (5) (2013) 4569-4577. open in new tab
  64. K. Tvingstedt, L. Gil-Escrig, C. Momblona, P. Rieder, D. Kiermasch, M. Sessolo, A. Baumann, H.J. Bolink, V. Dyakonov, Removing leakage and surface recombination in planar perovskite solar cells, ACS Energy Lett 2 (2) (2017) 424-430. open in new tab
  65. W. Tress, M. Yavari, K. Domanski, P. Yadav, B. Niesen, J.P. Correa Baena, A. Hagfeldt, M. Graetzel, Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light- soaking and irreversible degradation of perovskite solar cells, Energy Environ. Sci. 11 (2018) 151-165. open in new tab
  66. A. Babayigit, J. D'Haen, H.-G. Boyen, B. Conings, Gas quenching for perovskite thin film deposition, Joule 2 (7) (2018) 1205-1209. open in new tab
Verified by:
Gdańsk University of Technology

seen 37 times

Recommended for you

Meta Tags