Role of the disulfide bond in stabilizing and folding of the fimbrial protein DraE from uropathogenic Escherichia coli - Publication - Bridge of Knowledge

Search

Role of the disulfide bond in stabilizing and folding of the fimbrial protein DraE from uropathogenic Escherichia coli

Abstract

Dr fimbriae are homopolymeric adhesive organelles of uropathogenic Escherichia coli composed of DraE subunits, responsible for the attachment to host cells. These structures are characterized by enormously high stability resulting from the structural properties of an Ig-like fold of DraE. One feature of DraE and other fimbrial subunits that makes them peculiar among Ig-like domain-containing proteins is a conserved disulfide bond that joins their A and B strands. Here, we investigated how this disulfide bond affects the stability and folding/unfolding pathway of DraE. We found that the disulfide bond stabilizes self-complemented DraE (DraE-sc) by ∼50 kJ mol-1 in an exclusively thermodynamic manner, i.e. by lowering the free energy of the native state and with almost no effect on the free energy of the transition state. This finding was confirmed by experimentally determined folding and unfolding rate constants of DraE-sc and a disulfide bond-lacking DraE-sc variant. Although the folding of both proteins exhibited similar kinetics, the unfolding rate constant changed upon deletion of the disulfide bond by 10 orders of magnitude, from ∼10-17 s-1 to 10-7 s-1 Molecular simulations revealed that unfolding of the disulfide bond-lacking variant is initiated by strands A or G and that disulfide bond-mediated joining of strand A to the core strand B cooperatively stabilizes the whole protein. We also show that the disulfide bond in DraE is recognized by the DraB chaperone, indicating a mechanism that precludes the incorporation of less stable, non-oxidized DraE forms into the fimbriae.

Citations

  • 8

    CrossRef

  • 0

    Web of Science

  • 9

    Scopus

Cite as

Full text

download paper
downloaded 58 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
JOURNAL OF BIOLOGICAL CHEMISTRY no. 292, pages 16136 - 16149,
ISSN: 0021-9258
Language:
English
Publication year:
2017
Bibliographic description:
Pilipczuk J., Zalewska-Piątek B., Bruździak P., Czub J., Wieczór M., Olszewski M., Wanarska M., Nowicki B., Augustin-Nowacka D., Piątek R.: Role of the disulfide bond in stabilizing and folding of the fimbrial protein DraE from uropathogenic Escherichia coli// JOURNAL OF BIOLOGICAL CHEMISTRY. -Vol. 292, nr. 39 (2017), s.16136-16149
DOI:
Digital Object Identifier (open in new tab) 10.1074/jbc.m117.785477
Bibliography: test
  1. Nowicki, B., Hull, R., and Moulds, J. (1988) Use of the Dr hemagglutinin of uropathogenic Escherichia coli to differentiate normal from abnormal red cells in paroxysmal nocturnal hemoglobinuria. N. Engl. J. Med. 319, 1289 -1290 open in new tab
  2. Zavialov, A., Zav'yalova, G., Korpela, T., and Zav'yalov, V. (2007) FGL chaperone-assembled fimbrial polyadhesins: anti-immune armament of Gram-negative bacterial pathogens. FEMS Microbiol. Rev. 31, 478 -514 open in new tab
  3. Cota, E., Jones, C., Simpson, P., Altroff, H., Anderson, K. L., du Merle, L., Guignot, J., Servin, A., Le Bouguénec, C., Mardon, H., and Matthews, S. (2006) The solution structure of the invasive tip complex from Afa/Dr fibrils. Mol. Microbiol. 62, 356 -366 open in new tab
  4. Choudhury, D., Thompson, A., Stojanoff, V., Langermann, S., Pinkner, J., Hultgren, S. J., and Knight, S. D. (1999) X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285, 1061-1066 open in new tab
  5. Zav'yalov, V., Zavialov, A., Zav'yalova, G., and Korpela, T. (2010) Adhesive organelles of Gram-negative pathogens assembled with the classical chap- erone/usher machinery: structure and function from a clinical standpoint. FEMS Microbiol. Rev. 34, 317-378 open in new tab
  6. Folding and stability of DraE adhesin open in new tab
  7. J. Biol. Chem. (2017) 292(39) 16136 -16149 open in new tab
  8. Anderson, K. L., Billington, J., Pettigrew, D., Cota, E., Simpson, P., Roversi, P., Chen, H. A., Urvil, P., du Merle, L., Barlow, P. N., Medof, M. E., Smith, R. A., Nowicki, B., Le Bouguénec, C., Lea, S. M., et al. (2004) An atomic resolution model for assembly, architecture, and function of the Dr ad- hesins. Mol. Cell. 15, 647-657 open in new tab
  9. Pettigrew, D., Anderson, K. L., Billington, J., Cota, E., Simpson, P., Urvil, P., Rabuzin, F., Roversi, P., Nowicki, B., du Merle, L., Le Bouguénec, C., Mat- thews, S., and Lea, S. M. (2004) High resolution studies of the Afa/Dr adhesin DraE and its interaction with chloramphenicol. J. Biol. Chem. 279, 46851-46867 open in new tab
  10. Piatek, R., Zalewska, B., Kolaj, O., Ferens, M., Nowicki, B., and Kur, J. (2005) Molecular aspects of biogenesis of Escherichia coli Dr fimbriae: characterization of DraB-DraE complexes. Infect. Immun. 73, 135-145 open in new tab
  11. Piatek, R., Bruździak, P., Zalewska-Piatek, B., Kur, J., and Stangret, J. (2009) The preclusion of irreversible destruction of Dr adhesin structures by a high activation barrier for unfolding stage of the fimbrial DraE subunit. Biochemistry 48, 11807-11816 open in new tab
  12. Piatek, R., Bruździak, P., Wojciechowski, M., Zalewska-Piatek, B., and Kur, J. (2010) The noncanonical disulfide bond as the important stabilizing element of the immunoglobulin fold of the Dr fimbrial DraE subunit. Biochemistry 49, 1460 -1468 open in new tab
  13. Puorger, C., Eidam, O., Capitani, G., Erilov, D., Grütter, M. G., and Glock- shuber, R. (2008) Infinite kinetic stability against dissociation of supramo- lecular protein complexes through donor strand complementation. Struc- ture 16, 631-642 open in new tab
  14. Puorger, C., Vetsch, M., Wider, G., and Glockshuber, R. (2011) Structure, folding and stability of FimA, the main structural subunit of type 1 pili from uropathogenic Escherichia coli strains. J. Mol. Biol. 412, 520 -535 open in new tab
  15. Zavialov, A. V., Tischenko, V. M., Fooks, L. J., Brandsdal, B. O., Aqvist, J., Zav'yalov, V. P., Macintyre, S., and Knight, S. D. (2005) Resolving the energy paradox of chaperone/usher-mediated fibre assembly. Biochem. J. 389, 685-694 open in new tab
  16. Giese, C., Eras, J., Kern, A., Schärer, M. A., Capitani, G., and Glockshuber, R. (2016) Accelerating the association of the most stable protein-ligand complex by more than two orders of magnitude. Angew. Chem. Int. Ed. Engl. 55, 9350 -9355 open in new tab
  17. Crespo, M. D., Puorger, C., Schärer, M. A., Eidam, O., Grütter, M. G., Capitani, G., and Glockshuber, R. (2012) Quality control of disulfide bond formation in pilus subunits by the chaperone FimC. Nat. Chem. Biol. 8, 707-713 open in new tab
  18. Hung, D. L., Knight, S. D., Woods, R. M., Pinkner, J. S., and Hultgren, S. J. (1996) Molecular basis of two subfamilies of immunoglobulin-like chap- erones. EMBO J. 15, 3792-3805 open in new tab
  19. Zav'yalov, V. P., Zav'yalova, G. A., Denesyuk, A. I., and Korpela, T. (1995) Modelling of steric structure of a periplasmic molecular chaperone Caf1M of Yersinia pestis, a prototype member of a subfamily with characteristic structural and functional features. FEMS Immunol. Med. Microbiol. 11, 19 -24 open in new tab
  20. Zavialov, A. V., Berglund, J., Pudney, A. F., Fooks, L. J., Ibrahim, T. M., MacIntyre, S., and Knight, S. D. (2003) Structure and biogenesis of the capsular F1 antigen from Yersinia pestis: preserved folding energy drives fiber formation. Cell 113, 587-596 open in new tab
  21. Betz, S. F. (1993) Disulfide bonds and the stability of globular proteins. Protein Sci. 2, 1551-1558 open in new tab
  22. Hamill, S. J., Steward, A., and Clarke, J. (2000) The folding of an immuno- globulin-like Greek key protein is defined by a common-core nucleus and regions constrained by topology. J. Mol. Biol. 297, 165-178 open in new tab
  23. Roccatano, D., Daidone, I., Ceruso, M. A., Bossa, C., and Nola, A. (2003) Selective excitation of native fluctuations during thermal un- folding simulations: horse heart cytochrome c as a case study. Biophys J. 84, 1876 -1883 open in new tab
  24. Zalewska-Piatek, B., Bury, K., Piatek, R., Bruzdziak, P., and Kur, J. (2008) Type II secretory pathway for surface secretion of DraD invasin from the uropathogenic Escherichia coli Drϩ strain. J. Bacteriol. 190, 5044 -5056
  25. Servin, A. L. (2005) Pathogenesis of Afa/Dr diffusely adhering Escherichia coli. Clin. Microbiol. Rev. 18, 264 -292 open in new tab
  26. Korotkova, N., Cota, E., Lebedin, Y., Monpouet, S., Guignot, J., Servin, A. L., Matthews, S., and Moseley, S. L. (2006) A subfamily of Dr adhesins of Escherichia coli bind independently to decay-accelerating factor and the N-domain of carcinoembryonic antigen. J. Biol. Chem. 281, 29120 -29130 open in new tab
  27. Hamill, S. J., Meekhof, A. E., and Clarke, J. (1998) The effect of boundary selection on the stability and folding of the third fibronectin type III do- main from human tenascin. Biochemistry 37, 8071-8079 open in new tab
  28. Blomfield, I. C., McClain, M. S., and Eisenstein, B. I. (1991) Type 1 fimbriae mutants of Escherichia coli K12: characterization of recognized afimbriate strains and construction of new fim deletion mutants. Mol. Microbiol. 5, 1439 -1445 open in new tab
  29. Carnoy, C., and Moseley, S. (1997) Mutational analysis of receptor binding mediated by the Dr family of Escherichia coli adhesins. Mol Microbiol. 23, 365-379 open in new tab
  30. Zalewska, B., Piatek, R., Konopa, G., Nowicki, B., Nowicki, S., and Kur, J. (2003) Chimeric Dr fimbriae with a herpes simplex virus type 1 epitope as a model for a recombinant vaccine. Infect. Immun. 71, 5505-5513 open in new tab
  31. Zav'yalov, V. P., Chernovskaya, T. V., Chapman, D. A., Karlyshev, A. V., MacIntyre, S., Zavialov, A. V., Vasiliev, A. M., Denesyuk, A. I., Zav'yalova, G. A., Dudich, I. V., Korpela, T., and Abramov, V. M. (1997) Influence of the conserved disulphide bond, exposed to the putative binding pocket, on the structure and function of the immunoglobulin-like molecular chaper- one Caf1M of Yersinia pestis. Biochem. J. 324, 571-578 open in new tab
  32. Best, R. B., Zhu, X., Shim, J., Lopes, P. E., Mittal, J., Feig, M., Mackerell, A. D., Jr. (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone , and side- chain 1 and 2 dihedral angles. J. Chem. Theory Comput. 8, 3257-3273 open in new tab
  33. Abraham, M. J., M. T. Schulz R., Páll, S., Smith, J. C., Hess, B., and Lindahl, E. (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19 -25 open in new tab
  34. Tribello, G. A., B. M., Branduardi. D., Camilloni C., and Bussi, G. (2014) PLUMED 2: new feathers for an old bird. Comput. Phys. Commun. 185, 604 -613 open in new tab
  35. Folding and stability of DraE adhesin J. Biol. Chem. (2017) 292(39) 16136 -16149 16149 open in new tab
Verified by:
Gdańsk University of Technology

seen 119 times

Recommended for you

Meta Tags