Abstract
Following S. Bauer and M. Furuta we investigate finite dimensional approximations of a monopole map in the case b 1 = 0. We define a certain topological degree which is exactly equal to the Seiberg-Witten invariant. Using homotopy invariance of the topological degree a simple proof of the wall crossing formula is derived.
Author (1)
Cite as
Full text
download paper
downloaded 24 times
- Publication version
- Accepted or Published Version
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
Central European Journal of Mathematics
no. 10,
pages 2129 - 2137,
ISSN: 1895-1074 - Language:
- English
- Publication year:
- 2012
- Bibliographic description:
- Starostka M.: Seiberg-Witten invariants the topological degree and wall crossing formula// Central European Journal of Mathematics. -Vol. 10, nr. Iss. 6 (2012), s.2129-2137
- Verified by:
- Gdańsk University of Technology
seen 142 times
Recommended for you
Periodic Points for Sphere Maps Preserving MonopoleFoliations
- G. Graff,
- M. Misiurewicz,
- P. Nowak-Przygodzki
2019