Shading, Dusting and Incorrect Positioning of Photovoltaic Modules as Important Factors in Performance Reduction - Publication - Bridge of Knowledge

Search

Shading, Dusting and Incorrect Positioning of Photovoltaic Modules as Important Factors in Performance Reduction

Abstract

The amount of solar radiation reaching the front cover of a photovoltaic module is crucial for its performance. A number of factors must be taken into account at the design stage of the solar installation, which will ensure maximum utilization of the potential arising from the location. During the operation of a photovoltaic installation, it is necessary to limit the shading of the modules caused by both dust and shadowing by trees or other objects. The article presents an analysis of the impact of the radiation reaching the surface of the radiation module on the efficiency obtained. Each of the analyzed aspects is important for obtaining the greatest amount of energy in specific geographical conditions. Modules contaminated by settling dust will be less efficient than those without deposits. The results of experimental studies of this effect are presented, depending on the amount of impurities, including their origins and morphologies. In practice, it is impossible to completely eliminate shadowing caused by trees, uneven terrain, other buildings, chimneys, or satellite dishes, and so on, which limits the energy of solar radiation reaching the modules. An analysis of partial shading for the generated power was also carried out. An important way for maximizing the incoming radiation is the correct positioning of the modules relative to the sun. It is considered optimal to position the modules relative to the light source, that is, the sun, so that the rays fall perpendicular to the surfaces of the modules. Any deviation in the direction of the rays results in a loss in the form of a decrease in the available power of the module. The most beneficial option would be to use sun-tracking systems, but they represent an additional investment cost, and their installations require additional space and maintenance. Therefore, the principle was adopted that stationary systems should be oriented to the south, using the optimal angle of inclination of the module surface appropriate for the location. This article presents the dependence of the decrease in obtained power on the angle of deviation from the optimal one.

Citations

  • 1 4

    CrossRef

  • 0

    Web of Science

  • 1 6

    Scopus

Cite as

Full text

download paper
downloaded 87 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
ENERGIES no. 13, pages 1 - 12,
ISSN: 1996-1073
Language:
English
Publication year:
2020
Bibliographic description:
Klugmann-Radziemska E.: Shading, Dusting and Incorrect Positioning of Photovoltaic Modules as Important Factors in Performance Reduction// ENERGIES -Vol. 13,iss. 8 (2020), s.1-12
DOI:
Digital Object Identifier (open in new tab) 10.3390/en13081992
Bibliography: test
  1. Kaldellis, J.; Kapsali, M. Simulating the dust effect on the energy performance of photovoltaic generators based on experimental measurements. Energy 2011, 36, 5154-5161, doi:10.1016/j.energy.2011.06.018. open in new tab
  2. Elminir, H.K.; Ghitas, A.; Hamid, R.; El-Hussainy, F.; Beheary, M.; Abdel-Moneim, K.M. Effect of dust on the transparent cover of solar collectors. Energy Convers. Manag. 2006, 47, 3192-3203, doi:10.1016/j.enconman.2006.02.014. open in new tab
  3. Sayigh, A.A.M.; Al-Jandal, S.; Ahmed, H. Dust Effect on Solar Flat Surfaces Devices in Kuwait. In Proceedings of the Workshop on the Physics of Non-Conventional Energy Sources and Materials Science for Energy, Trieste, Italy, 2-20 September 1985; pp. 353-367.
  4. Fujiwara, F.; Rebagliati, R.J.; Dawidowski, L.; Gómez, D.; Polla, G.; Pereyra, V.; Smichowski, P. Spatial and chemical patterns of size fractionated road dust collected in a megacitiy. Atmos. Environ. 2011, 45, 1497- 1505, doi:10.1016/j.atmosenv.2010.12.053. open in new tab
  5. Bi, X.; Liang, S.; Li, X. A novel in situ method for sampling urban soil dust: Particle size distribution, trace metal concentrations, and stable lead isotopes. Environ. Pollut. 2013, 177, 48-57, doi:10.1016/j.envpol.2013.01.045. open in new tab
  6. Sarver, T.; Al-Qaraghuli, A.; Kazmerski, L.L. A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches. Renew. Sustain. Energy Rev. 2013, 22, 698-733, doi:10.1016/j.rser.2012.12.065. open in new tab
  7. Cabanillas, R.E.; MunguíaH. Dust accumulation effect on efficiency of Si photovoltaic modules. J. Renew. Sustain. Energy 2011, 3, 43114, doi:10.1063/1.3622609. open in new tab
  8. Mani, M.; Pillai, R. Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renew. Sustain. Energy Rev. 2010, 12, 3124-3131, doi:10.1016/j.rser.2010.07.065. open in new tab
  9. McTainsh, G.; Nickling, W.; Lynch, A. Dust deposition and particle size in Mali, West Africa. Catena 1997, 29, 307-322, doi:10.1016/s0341-8162(96)00075-6. open in new tab
  10. Beattie, N.S.; Moir, R.S.; Chacko, C.; Buffoni, G.; Roberts, S.H.; Pearsall, N.M. Understanding the effects of sand and dust accumulation na photovoltaic modules, Renew. Energy 2012, 48, 448. open in new tab
  11. Biryukov, S. Degradation of optical properties of solar collectors due to the ambient dust deposition as a function of particle size. J. Aerosol Sci. 1996, 27, S37-S38, doi:10.1016/0021-8502(96)00091-2. open in new tab
  12. Bouaouadja, N.; Bouzid, S.; Hamidouche, M.; Bousbaa, C.; Madjoubi, M. Effects of sandblasting on the efficiencies of solar panels. Appl. Energy 2000, 65, 99-105. open in new tab
  13. Zhang, Z.; Cui, B.; Fang, F.; Fan, X.; Zhang, H. Multifractal analysis to characterize urban surface dust volume-size distribution. Procedia Environ. Sci. 2012, 13, 2394-2401. open in new tab
  14. Igathinathane, C.; Melin, S.; Sokhansanj, S.; Bi, X.; Lim, C.J.; Pordesimo, L.O.; Columbus, E.P. Machine vision based particle size and size distribution determination of airbone dust partices of wood and bark pellets. Powder Technol. 2009, 196, 202. open in new tab
  15. Garg, H. Effect of dirt on transparent covers in flat-plate solar energy collectors. Sol. Energy 1974, 15, 299- 302, doi:10.1016/0038-092x(74)90019-x. open in new tab
  16. Hassan, A.H.; Rahoma, U.A.; Elminir, H.K.; Fathy, A.M, Effect of airborne dust concentration on the performance of PV modules. J. Astron. Soc. Egypt 2005, 13, 24-38.
  17. Gupta, V. Impact of Dust Deposition on Solar Photovoltaic Panel in Desert Regio: Review. Int. J. Elect. Elect. Comput. Syst. 2017, 6, 125-140. open in new tab
  18. Ta, W.; Xiao, H.; Qu, J.; Xiao, Z.; Yang, G.; Wang, T.; Zhang, X. Measurements of dust deposition in Gansu Province, China, 1986-2000. Geomorphol. 2004, 57, 41-51, doi:10.1016/s0169-555x(03)00082-5. open in new tab
  19. Bimenyimana, S.; Asemota, G.N.O.; Kemunto, M.C.; Li, L. Shading effects in photovoltaic modules: Simulation and experimental results. In Proceedings of the 2017 2nd International Conference on Power and Renewable Energy (ICPRE 2017) IEEE Xplore and Ei Compendex, Chengdu, China, 20-23 September 2017; pp. 904-909. open in new tab
  20. Tsafarakis, O.; Sinapis, K.; Van Sark, W. A Time-Series Data Analysis Methodology for Effective Monitoring of Partially Shaded Photovoltaic Systems. Energies 2019, 12, 1722, doi:10.3390/en12091722. open in new tab
  21. Teo, J.C.; Tan, R.; Mok, V.; Ramachandaramurthy, V.; Tan, C. Impact of Partial Shading on the P-V Characteristics and the Maximum Power of a Photovoltaic String. Energies 2018, 11, 1860, doi:10.3390/en11071860. open in new tab
  22. Sarniak, M.T.; Wernik, J.; Wołosz, K. Application of the Double Diode Model of Photovoltaic Cells for Simulation Studies on the Impact of Partial Shading of Silicon Photovoltaic Modules on the Waveforms of Their Current-Voltage Characteristic. Energies 2019, 12, 2421, doi:10.3390/en12122421. open in new tab
  23. Bouali Ch., Schulte H., Mami A.; A High Performance Optimizing Method for Modeling Photovoltaic Cells and Modules Array Based on Discrete Symbiosis Organism Search, Energies 2019, 12, 2246; doi:10.3390/en12122246. open in new tab
  24. Guo, S.; Walsh, T.M.; Aberle, A.G.; Peters, I.M. Analysing partial shading of PV modules by circuit modelling. In Proceedings of the 2012 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 3- 8 June 2012; pp. 002957-002960. open in new tab
  25. Kassem, Y.; Çamur, H.; Alhuoti, S. Solar Energy Technology for Northern Cyprus: Assessment, Statistical Analysis, and Feasibility Study. Energies 2020, 13, 940; doi:10.3390/en13040940. open in new tab
  26. Toledo C., Amillo A., Bardizza G., Abad J., Urbina A. Models for Passive Energy Management and Building Integrated Photovoltaics. Energies 2020, 13, 702, doi:10.3390/en13030702. open in new tab
  27. Berisha, X.; Zeqiri, A.; Meha, D. Solar Radiation-The Estimation of the Optimum Tilt Angles for South- Facing Surfaces in Pristina. Preprints 2017, doi:10.20944/preprints201708.0010.v1. open in new tab
  28. Grzesiak, W.; Maj, T.; Mackow, P.; Klugmann-Radziemska, E.; Zawora, S.; Grzesiak, P. New solutions for the solar Charge Controllers Design for obtaining true MPP in partly shaded PV modules. In Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC 2014), Amsterdam, The Netherlands, 22-26 September 2014; pp. 3016-3019. open in new tab
  29. Sukhatme, S.P. Solar Energy: Principles of Thermal Collection and Storage, 3rd ed.; McGraw-Hill Education: New York, NK, USA, 2008; p. 84. ISBN 978-0070260641.
Verified by:
Gdańsk University of Technology

seen 94 times

Recommended for you

Meta Tags