Abstract
Let f be a smooth map of the m-dimensional sphere Sm to itself, preserving the longitudinal foliation. We estimate from below the number of fixed points of the iterates of f , reduce Shub’s conjecture for longitudinal maps to a lower dimensional classical version, and prove the conjecture in case m = 2 and in a weak form for m = 3.
Citations
-
3
CrossRef
-
0
Web of Science
-
3
Scopus
Authors (3)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS
no. 24,
pages 1044 - 1054,
ISSN: 1023-6198 - Language:
- English
- Publication year:
- 2018
- Bibliographic description:
- Graff G., Misiurewicz M., Nowak-Przygodzki P.: Shub’s conjecture for smooth longitudinal maps of S^m// JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS. -Vol. 24, nr. 7 (2018), s.1044-1054
- DOI:
- Digital Object Identifier (open in new tab) 10.1080/10236198.2018.1449840
- Sources of funding:
- Verified by:
- Gdańsk University of Technology
seen 124 times
Recommended for you
Periodic Points for Sphere Maps Preserving MonopoleFoliations
- G. Graff,
- M. Misiurewicz,
- P. Nowak-Przygodzki
2019