Abstract
A methodology for computationally efficient simulation-driven design of microstrip antenna subarrays is presented. Our approach takes into account the effect of the feed (e.g., a corporate network) on the subarray side lobe level and allows adjusting both radiation and reflection responses of the structure under design within a single automated process. This process is realized as surrogate-based optimization that produces designs meeting requirements imposed on both radiation and reflection at the cost of just a few simulations of the high-fidelity model of the structure of interest. Selected optimal designs of microstrip subarrays operating at 10 GHz have been manufactured and validated by measuring their radiation patterns and reflection coefficients.
Authors (4)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION
no. 62,
edition 7,
pages 1 - 8,
ISSN: 0018-926X - Language:
- English
- Publication year:
- 2014
- Bibliographic description:
- Kozieł S., Ogurtsov S., Zieniutycz W., Sorokosz Ł.: Simulation-Driven Design of Microstrip Antenna Subarrays// IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. -Vol. 62, iss. 7 (2014), s.1-8
- Verified by:
- Gdańsk University of Technology
seen 128 times
Recommended for you
Design of a Planar UWB Dipole Antenna with an Integrated Balun Using Surrogate-Based Optimization
- S. Kozieł,
- S. Ogurtsov,
- A. Bekasiewicz
- + 1 authors