Solar Photovoltaic Energy Optimization and Challenges - Publication - Bridge of Knowledge

Search

Solar Photovoltaic Energy Optimization and Challenges

Abstract

The study paper focuses on solar energy optimization approaches, as well as the obstacles and concerns that come with them. This study discusses the most current advancements in solar power generation devices in order to provide a reference for decision-makers in the field of solar plant construction throughout the world. These technologies are divided into three groups: photovoltaic, thermal, and hybrid (thermal/photovoltaic). As a result, this article begins by outlining the approach that will be employed to undertake this research. Following that, solar energy production methods are researched and their sub-classifications are described in order to establish their resource needs and features. Following that, a detailed conversation is held. Each technology’s environmental and economic performance will be evaluated. Furthermore, a statistical analysis is conducted to emphasize the efficiency and performance of each solar technology, as well as to identify their global rankings in terms of power output. Finally, research trends in the development of solar power plants are presented. The credibility of the Photovoltaic system, types and limitations is the discussion under study system makes use of sun’s energy to generate electricity with the help of varied procedural systems; stand-alone, hybrid or grid charged. Based on this research, it is possible to infer that the primary goals of optimization approaches are to reduce investment, operation and maintenance costs, and emissions in order to improve system dependability. This paper also includes a brief overview of several solar energy optimization problems and issues.

Citations

Cite as

Full text

download paper
downloaded 65 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Artistic work results
Type:
Artistic work results
Publication year:
2022
DOI:
Digital Object Identifier (open in new tab) http://dx.doi.org/10.3389/fenrg.2022.879985
Bibliography: test
  1. Achkari, O., and El Fadar, A. (2020). Latest Developments on TES and CSP Technologies -Energy and Environmental Issues, Applications and Research Trends. Appl. Therm. Eng. 167, 114806. doi:10.1016/j.applthermaleng.2019. 114806 open in new tab
  2. Agyekum, E. B., and Velkin, V. I. (2020). Optimization and Techno-Economic Assessment of Concentrated Solar Power (CSP) in South-Western Africa: A Case Study on Ghana. Sustain. Energy Technol. Assessments 40, 100763. doi:10. 1016/j.seta.2020.100763 open in new tab
  3. Allam, M. A., Hamad, A. A., Kazerani, M., and El-Saadany, E. F. (2018). A Novel Dynamic Power Routing Scheme to Maximize Loadability of Islanded Hybrid AC/DC Microgrids under Unbalanced AC Loading. IEEE Trans. Smart Grid 9, 5798-5809. doi:10.1109/tsg.2017.2697360 open in new tab
  4. Alotaibi, S., Alotaibi, F., and Ibrahim, O. M. (2020). Solar-assisted Steam Power Plant Retrofitted with Regenerative System Using Parabolic Trough Solar Collectors. Energy Rep. 6, 1 24-33. doi:10.1016/j.egyr. 2019.12.019 open in new tab
  5. Alsaffar, A. (2015). An Overview of Location Planning of Solar Generation. Available at: https://www.nrel.gov/docs/fy14osti/60240.pdf. open in new tab
  6. Aly, A., Bernardos, A., Fernandez-Peruchena, C. M., Jensen, S. S., and Pedersen, A. B. (2019). Is Concentrated Solar Power (CSP) a Feasible Option for Sub-saharan Africa?: Investigating the Technoeconomic Feasibility of CSP in Tanzania. Renew. Energy 135, 12 24-40. doi:10.1016/j.renene.2018.09.065 open in new tab
  7. Aqachmar, Z., Allouhi, A., Jamil, A., Gagouch, B., and Kousksou, T. (2019). open in new tab
  8. Parabolic Trough Solar Thermal Power Plant Noor I in Morocco. Energy 178. doi:10.1016/j.energy.2019.04.160 open in new tab
  9. Aqachmar, Z., Bouhal, T., and Lahrech, K. (2020). Energetic, Economic, and Environmental (3 E) Performances of High Concentrated Photovoltaic Large Scale Installations: Focus on Spatial Analysis of Morocco. Int. J. Hydrogen Energy 45, 10840-10861. doi:10.1016/j.ijhydene.2020.01.210 open in new tab
  10. Assadeg, J., Sopian, K., and Fudholi, A. (2019). Performance of Grid-Connected Solar Photovoltaic Power Plants in the Middle East and North Africa. Int. J. Electr. Comput. Eng. (IJECE) 9, 3375. doi:10.11591/ijece.v9i5.pp3375-3383 open in new tab
  11. Awan, A. B., Chandra Mouli, K. V. V., and Zubair, M. (2020a). Performance Enhancement of Solar Tower Power Plant: a Multi-Objective Optimization Approach. Energy Convers. Manag. 225, 113378. doi:10.1016/j.enconman.2020. 113378 open in new tab
  12. Awan, A. B., Zubair, M., and Chandra Mouli, K. V. V. (2020b). Design, Optimization and Performance Comparison of Solar Tower and Photovoltaic Power Plants. Energy 199, 117450. doi:10.1016/j.energy.2020. 117450 open in new tab
  13. Bamisile, O., Huang, Q., Dagbasi, M., and Adebayo, V. (2020). Thermo-environ Study of a Concentrated Photovoltaic Thermal System Integrated with Kalina Cycle for Multigeneration and Hydrogen Production. Int. J. Hydrogen Energy 45 (51), 267 16-32. doi:10.1016/j.ijhydene.2020.07.029 open in new tab
  14. Bellos, E. (2019). Progress in the design and the applications of linear Fresnel reflectors e a critical review. Therm. Sci. Eng. Prog. 10, 1 12-37. doi:10.1016/j. tsep.2019.01.014 open in new tab
  15. Bishoyi, D., and Sudhakar, K. (2017). Modeling and Performance Simulation of 100 MW LFR Based Solar Thermal Power Plant in Udaipur India. Resource- Efficient Technol. 3 (4), 365-377. doi:10.1016/j.reffit.2017.02.002 open in new tab
  16. Boukelia, T. E., Arslan, O., and Mecibah, M. S. (2017). Potential Assessment of a Parabolic Trough Solar Thermal Power Plant Considering Hourly Analysis: ANN-Based Approach. Renew. Energy 105, 3 24-33. doi:10.1016/j.renene.2016. 12.081 open in new tab
  17. Chen, R., Rao, Z., and Liao, S. (2018). Determination of Key Parameters for Sizing the Heliostat Field and Thermal Energy Storage in Solar Tower Power Plants. Energy Convers. Manag. 177, 3 85-94. doi:10.1016/j.enconman.2018.09.065 open in new tab
  18. Collado, F. J., and Guallar, J. (2019). Quick Design of Regular Heliostat Fields for Commercial Solar Tower Power Plants. Energy 178, 1 15-25. doi:10.1016/j. energy.2019.04.117 open in new tab
  19. Dong, L., Zhang, T., Pu, T., Chen, N., and Sun, Y. (2019). A Decentralized Optimal Operation of AC/DC Hybrid Microgrids Equipped with Power Electronic Transformer. IEEE Access 7, 157946-157959. doi:10.1109/access.2019.2949378 open in new tab
  20. Dowling, A. W., Zheng, T., and Zavala, V. M. (2017). Economic Assessment of Concentrated Solar Power Technologies: a Review. Renew. Sustain. energy Rev. 72, 1019-1032. doi:10.1016/j.rser.2017.01.006 open in new tab
  21. Eajal, A. A., El-Saadany, E. F., and Ponnambalam, K. (2017). "Optimal Power Flow for Converter-Dominated AC/DC Hybrid Microgrids," in Proceedings of the 2017 IEEE International Conference on Industrial Technology (ICIT) (Toronto, Canada: IEEE), 603-608. doi:10.1109/icit.2017.7915427 open in new tab
  22. Eddhibi, F., Ben Amara, M., Balghouthi, M., and Guizani, A. (2017). Design and Analysis of a Heliostat Field Layout with Reduced Shading Effect in Southern Tunisia. Int. J. Hydrogen Energy 42 (48), 289 73-96. doi:10.1016/j.ijhydene. 2017.07.217 open in new tab
  23. Farh, H. M. H., Eltamaly, A. M., and Othman,, M. F. (2018). Hybrid PSO-FLC for Dynamic Global Peak Extraction of the Partially Shaded Photovoltaic System. PLOS ONE 13, e0206171. doi:10.1371/journal.pone.0206171 open in new tab
  24. Furkan, D., and Mehmet Emin, M. (2010). Critical Factors That Affecting Efficiency of Solar Cells. Smart Grid and Renewable Energy 1 (1), 47-50. doi:10.4236/sgre.2010.11007 open in new tab
  25. Gaga, A., Benssassi, H., Errahimi, F., and Sbai, N. E. (2017). Battery State of Charge Estimation Using an Adaptive Unscented Kalman Filter for Photovoltaics Applications. Int. Rev. Autom. Control 10 (4), 3 49-58. doi:10.15866/ireaco. v10i4.11393 open in new tab
  26. Georgescu-Roegen, N. (1979). Energy Analysis and Economic Valuation. South. Econ. J. 45, 1023-1058. doi:10.2307/1056953 open in new tab
  27. Getie, E. M., Gessesse, B. B., and Workneh, T. G. (2020). Photovoltaic Generation Integration with Radial Feeders Using GA and GIS. Int. J. Photoenergy 2020, 8854711. doi:10.1155/2020/8854711 open in new tab
  28. Ghodbane, M., Boumeddane, B., and Said, N. (2016). A Linear Fresnel Reflector as a Solar System for Heating Water: Theoretical and Experimental Study. Case Stud. Therm. Eng. 8, 176-186. doi:10.1016/j.csite.2016.06 open in new tab
  29. Ghodbane, M., Boumeddane, B., Said, Z., and Bellos, E. (2019). A Numerical Simulation of a Linear Fresnel Solar Reflector Directedto Produce Steam for the Power Plant. J. Clean. Prod. 231, 494e508. doi:10.1016/j.jclepro.2019.05.201 open in new tab
  30. Gonzalez-Longatt, F. M. (2005). Model of Photovoltaic Module in Matlab. Ii Cibelec 2005, 1-5.
  31. Hakimi, M., Baniasadi, E., and Afshari, E. (2020). Thermo-economic Analysis of Photovoltaic, Central Tower Receiver and Parabolic Trough Power Plants for Herat City in Afghanistan. Renew. Energy 150, 8 40-53. doi:10.1016/j.renene. 2020.01.009 open in new tab
  32. Hissouf, M., Feddaoui, M., Najim, M., and Charef, A. (2020). Numerical Study of a Covered Photovoltaic-Thermal Collector (PVT) Enhancement Using Nanofluids. Sol. Energy 199, 1 15-27. doi:10.1016/j.solener.2020.01.083 open in new tab
  33. IEA (2020). International Energy Agency. Available at: https://www.iea.org/. open in new tab
  34. Indra Gandhi, V., Logesh, R., Subramaniyaswamy, V., Vijayakumar, V., Siarry, P., and Uden, L. (2018). Multi-Objective Optimization and Energy Management in Renewable Based AC/DC Microgrid. Comput. Electr. Eng. 70, 179-198.
  35. IRENA (2018). Global Energy Transformation: A Roadmap to 2050. International Renewable energy agency. Available at: https://www.irena.org/-/media/Files/ IRENA/Agency/Publication/2018/Jul/IRENA_Renewable_Energy_Statistics_ 2018.pdf. open in new tab
  36. Islam, M. T., Huda, N., Abdullah, A. B., and Saidur, R. (2018). A Comprehensive Review of State-Of-The-Art Concentrating Solar Power (CSP) Technologies: Current Status and Research Trends. Renew. Sustain. Energy Rev. 91, 987-1018. doi:10.1016/j.rser.2018.04.097 open in new tab
  37. Islam, M. T., Huda, N., and Saidur, R. (2019). Current Energy Mix and Techno- Economic Analysis of Concentrating Solar Power (CSP) Technologies in Malaysia. Renew. Energy 140, 789-806. doi:10.1016/j.renene.2019.03.107 open in new tab
  38. Ju, X., Xu, C., Hu, Y., Han, X., Wei, G., and Du, X. (2017). A Review on the Development of Photovoltaic/concentrated Solar Power (PVCSP) Hybrid Systems. Sol. Energy Mater Sol. Cells 161 (12), 3 05-27. doi:10.1016/j.solmat. 2016.12.004 open in new tab
  39. Kumar, S., Agarwal, A., and Kumar, A. (2021). Financial Viability Assessment of Concentrated Solar Power Technologies under Indian Climatic Conditions. Sustain. Energy Technol. Assessments 43, 100928. doi:10.1016/j.seta.2020.100928 open in new tab
  40. Laarabi, B., El Baqqal, Y., Dahrouch, A., Barhdadi, A., Deep Pizzi, S., Corbo, L., et al. (2021a). Fintech and SMEs Sustainable Business Models: Reflections and Considerations for a Circular Economy. J. Clean. Prod. 281, 125217.
  41. Laarabi, B., El Baqqal, Y., Rajasekar, N., and Barhdadi, A. (2021b). Updated Review on Soiling of Solar Photovoltaic Systems Morocco and India Contributions. J. Clean. Prod. 311, 127608. doi:10.1016/j.jclepro.2021.127608 open in new tab
  42. Lagouir, M., Badri, A., and Sayouti, Y. (2019). "An Optimal Energy Management System of Islanded Hybrid AC/DC Microgrid," in Proceedings of the 2019 5th International Conference on Optimization and Applications (ICOA) (Kenitra, Morocco: IEEE), 1-6. open in new tab
  43. Li, P., Hua, H., Di, K., and Zhou, J. (2016). "Optimal Operation of AC/DC Hybrid Microgrid under Spot Price Mechanism," in Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM) (Boston, MA, USA: IEEE), 1-5. doi:10.1109/pesgm.2016.7741670 open in new tab
  44. Li, P., and Zheng, M. (2019). Multi-objective Optimal Operation of Hybrid AC/DC Microgrid Considering Source-Network-Load Coordination. J. Mod. Power Syst. Clean. Energy 7, 1229-1240. doi:10.1007/s40565-019-0536-3 open in new tab
  45. Li, y. N. (2021). Renewable Power Generation Subsidies in china: An Economic Feasibility Analysis and Policy Recommendations. University of Tokyo. doctoral dissertation.
  46. Liu, S., and Janajreh, I. (2012). "Wind Energy Assessment: Masdar City Case Study," in 2012 8th International Symposium on Mechatronics and its Applications (Springer), 1-6. doi:10.1109/ISMA.2012.6215162 open in new tab
  47. Lokar, J., and Virtic, P. (2020). The Potential for Integration of Hydrogen for Complete Energy Self-Sufficiency in Residential Buildings with Photovoltaic and Battery Storage Systems. Int. J. Hydrogen Energy 45, 345 66-78. doi:10. 1016/j.ijhydene.2020.04.170 open in new tab
  48. Lopez, O., Banos, A., and Arenas, A. (2020). On the Thermal Performance of Flat and Cavity Receivers for a Parabolic Dish Concentrator and Low/medium Temperatures. Sol. Energy 199, 91123. doi:10.1016/j.solener.2019.07.056 open in new tab
  49. Lund, H., and Mathiesen, B. V. (2009). Energy System Analysis of 100% Renewable Energy Systems-The Case of Denmark in Years 2030 and 2050. Energy 34 (5), 524-531. open in new tab
  50. Luque, A., and Hegedus, S. (2011). Handbook of Photovoltaic Science and Engineering. John Wiley & Sons.
  51. Majidi, M., Nojavan, S., Nourani Esfetanaj, N., Najafi-Ghalelou, A., and Zare, K. (2017). A Multi-Objective Model for Optimal Operation of a battery/PV/fuel Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 879985 open in new tab
  52. Cell/grid Hybrid Energy System Using Weighted Sum Technique and Fuzzy Satisfying Approach Considering Responsible Load Management. Sol. Energy 144, 79-89. doi:10.1016/j.solener.2017.01.009 open in new tab
  53. Marzo, A., Salmon, A., Polo, J., Ballestrín, J., Soto, G., Quiñones, G., et al. (2021). Solar Extinction Map in Chile for Applications in Solar Power Tower Plants, Comparison with Other Places from Sunbelt and Impact on LCOE. Renew. Energy 170, 197-211. doi:10.1016/j.renene.2021.01.126 open in new tab
  54. Maulik, A., and Das, D. (2018). "Multi-Objective Optimal Dispatch of AC-DC Hybrid Microgrid," in Proceedings of the 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC) (Kota Kinabalu, Malaysia: IEEE), 82-87. doi:10.1109/appeec.2018.8566354 open in new tab
  55. Ming, M., Wang, R., Zha, Y., and Zhang, T. (2017). Multi-objective Optimization of Hybrid Renewable Energy System Using an Enhanced Multi-Objective Evolutionary Algorithm. Energies 10 (5), 674. doi:10.3390/en10050674 open in new tab
  56. Mohamed, A. F., Elarini, M. M., and Othman, A. M. (2014). A New Technique Based on Artificial Bee Colony Algorithm for Optimal Sizing of Stand-Alone Photovoltaic System. J. Adv. Res. 5 (3), 397-408. doi:10.1016/j.jare.2013.06.010 open in new tab
  57. Motahhir, S., El Hammoumi, A., and El Ghzizal, A. (2020). The Most Used MPPT Algorithms: Review and the Suitable Low-Cost Embedded Board for Each Algorithm. J. Clean. Prod. 246, 118983. doi:10.1016/j.jclepro.2019.118983 open in new tab
  58. Moukhtar, I., El Dein, A. Z., Elbaset, A. A., and Mitani, Y. (2021). "Penetration Characteristics of Hybrid CSP and PV Solar Plants Economic," in Power Systems (Springer Science and Business Media Deutschland GmbH), 99-111. doi:10.1007/978-3-030-61307-5_5 open in new tab
  59. Otero, A. F., Cidras, J., and Garrido, C. (1998). "Genetic Algorithm Based Method for Grounding Grid Design," in 1998 IEEE International Conference on Evolutionary Computation Proceedings (IEEE World Congress on Computational Intelligence, Cat. No. 98TH8360), 120-123. open in new tab
  60. Ouagued, M., Khellaf, A., and Loukarfi, L. (2018). Performance Analyses of CueCl Hydrogen Production Integrated Solar Parabolic Trough Collector System under Algerian Climate. Int. J. Hydrogen Energy 43 (6), 34 51-65. doi:10. 1016/j.ijhydene.2017.11.040 open in new tab
  61. Prakash, P., and Khatod, D. K. (2016). Optimal Sizing and Siting Techniques for Distributed Generation in Distribution Systems: A Review. Renew. Sustain. energy Rev. 57, 111-130. doi:10.1016/j.rser.2015.12.099 open in new tab
  62. Qiu, H., Gu, W., Xu, Y., and Zhao, B. (2019). Multi-Time-Scale Rolling Optimal Dispatch for AC/DC Hybrid Microgrids with Day-Ahead Distributionally Robust Scheduling. IEEE Trans. Sustain. Energy 10 (4), 1653-1663. doi:10. 1109/TSTE.2018.2868548 open in new tab
  63. Raturi, A. K. (2019). Renewables 2019 Global Status Report. Available at: https:// www.ren21.net/wp-content/uploads/2019/05/gsr_2019_full_report_en.pdf.
  64. Sanda, A., Moya, S. L., and Valenzuela, L. (2019). Modeling and Simulation Tools for Direct Steam Generation in Parabolic-Trough Solar Collectors: a Review. Renew. Sustain. energy Rev. 113, 109226. doi:10.1016/j.rser.2019.06.033 open in new tab
  65. Simsek, Y., Mata-Torres, C., Escobar, R., and Cardemil, J. M. (2018). Incentives and Financial Conditions Effect Analysis on Levelized Cost of Electricity (LCOE) and Government Cost for Concentrated Solar Power (CSP) Projects in Chile. AIP Conf. Proc. 2033. doi:10.1063/1.5067134 open in new tab
  66. Solar paces (2019). Solar Paces NREL. Available at: https://solarpaces.nrel.gov/. open in new tab
  67. Tascioni, R., Arteconi, A., Del Zotto, L., and Cioccolanti, L. (2020). Fuzzy Logic Energy Management Strategy of a Multiple Latent Heat Thermal Storage in a Small-Scale Concentrated Solar Power Plant. Energies 13 (11), 23-28. doi:10. 3390/en13112733 open in new tab
  68. Wikimedia Commons (2018). How Solar Power Works. Available at: https:// commons.wikimedia.org/wiki/File:How_Solar_Power_Works.png. open in new tab
  69. Zakaria, A., Ismail, F. B., Lipu, M. S. H., and Hannan, M. A. (2020). Uncertainty Models for Stochastic Optimization in Renewable Energy Applications. Renew. Energy 145, 1543-1571. doi:10.1016/j.renene.2019.07.081 open in new tab
  70. Zhang, H. L., Baeyens, J., Degreve, J., and Cac eres, G. (2013). Concentrated Solar Power Plants: Review and Design Methodology. Renew. Sustain. energy Rev. 22, 466e81. doi:10.1016/j.rser.2013.01.032 open in new tab
  71. Zhang, H., and Toudert, J. (2018). Optical Management for Efficiency Enhancement in Hybrid Organic-Inorganic Lead Halide Perovskite Solar Cells. Sci. Technol. Adv. Mater. 19 (1), 411-424. doi:10.1080/14686996.2018. 1458578 open in new tab
  72. Zhao T, T., Xiao, J., Hai, K. L., and Wang, P. (2017). "Two-Stage Stochastic Optimization for Hybrid AC/DC Microgrid Embedded Energy Hub," in Proceedings of the 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2) (Beijing, China: IEEE), 1-6. doi:10.1109/ei2.2017. 8245648 open in new tab
  73. Zhao Zy, Z. Y., Chen, Y. L., and Thomson, J. D. (2017). Levelized Cost of Energy Modeling for Concentrated Solar Power Projects: a China Study. Energy 120, 1 17-27. doi:10.1016/j.energy.2016.12.122 open in new tab
  74. Zhar, R., Allouhi, A., Ghodbane, M., Jamil, A., and Lahrech, K. (2021). Parametric Analysis and Multi-Objective Optimization of a Combined Organic Rankine Cycle and Vapor Compression Cycle. Sustain. Energy Technol. Assessments 47, 101401. doi:10.1016/j.seta.2021.101401 open in new tab
  75. Zheng, Y., Jenkins, B. M., Kornbluth, K., and Traeholt, C. (2018). Optimization under Uncertainty of a Biomass-Integrated Renewable Energy Microgrid with Energy Storage. Renew. energy 123, 204-217. doi:10.1016/j.renene.2018. 01.120 open in new tab
  76. Zhuang, X., Xu, X., Liu, W., and Xu, W. (2019). LCOE Analysis of Tower Concentrating Solar Power Plants Using Different Molten-Salts for Thermal Energy Storage in China. Energies 12 (7), 1394. doi:10.3390/en12071394 open in new tab
  77. Zineb, A., Hicham, B., Khadija, L., and Abdelfettah, B. (2021). Solar Technologies for Electricity Production: An Updated Review. nternational J. Hydrogen Energy 46 (60), 30790-30817. ISSN 0360-3199. doi:10.1016/j.ijhydene.2021. 06.190 open in new tab
  78. Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. open in new tab
Verified by:
No verification

seen 91 times

Recommended for you

Meta Tags