Solar Photovoltaic Energy Optimization and Challenges - Publikacja - MOST Wiedzy

Wyszukiwarka

Solar Photovoltaic Energy Optimization and Challenges

Abstrakt

The study paper focuses on solar energy optimization approaches, as well as the obstacles and concerns that come with them. This study discusses the most current advancements in solar power generation devices in order to provide a reference for decision-makers in the field of solar plant construction throughout the world. These technologies are divided into three groups: photovoltaic, thermal, and hybrid (thermal/photovoltaic). As a result, this article begins by outlining the approach that will be employed to undertake this research. Following that, solar energy production methods are researched and their sub-classifications are described in order to establish their resource needs and features. Following that, a detailed conversation is held. Each technology’s environmental and economic performance will be evaluated. Furthermore, a statistical analysis is conducted to emphasize the efficiency and performance of each solar technology, as well as to identify their global rankings in terms of power output. Finally, research trends in the development of solar power plants are presented. The credibility of the Photovoltaic system, types and limitations is the discussion under study system makes use of sun’s energy to generate electricity with the help of varied procedural systems; stand-alone, hybrid or grid charged. Based on this research, it is possible to infer that the primary goals of optimization approaches are to reduce investment, operation and maintenance costs, and emissions in order to improve system dependability. This paper also includes a brief overview of several solar energy optimization problems and issues.

Cytowania

Cytuj jako

Pełna treść

pobierz publikację
pobrano 65 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Efekty działalności twórczej
Typ:
Efekty działalności twórczej
Rok wydania:
2022
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) http://dx.doi.org/10.3389/fenrg.2022.879985
Bibliografia: test
  1. Achkari, O., and El Fadar, A. (2020). Latest Developments on TES and CSP Technologies -Energy and Environmental Issues, Applications and Research Trends. Appl. Therm. Eng. 167, 114806. doi:10.1016/j.applthermaleng.2019. 114806 otwiera się w nowej karcie
  2. Agyekum, E. B., and Velkin, V. I. (2020). Optimization and Techno-Economic Assessment of Concentrated Solar Power (CSP) in South-Western Africa: A Case Study on Ghana. Sustain. Energy Technol. Assessments 40, 100763. doi:10. 1016/j.seta.2020.100763 otwiera się w nowej karcie
  3. Allam, M. A., Hamad, A. A., Kazerani, M., and El-Saadany, E. F. (2018). A Novel Dynamic Power Routing Scheme to Maximize Loadability of Islanded Hybrid AC/DC Microgrids under Unbalanced AC Loading. IEEE Trans. Smart Grid 9, 5798-5809. doi:10.1109/tsg.2017.2697360 otwiera się w nowej karcie
  4. Alotaibi, S., Alotaibi, F., and Ibrahim, O. M. (2020). Solar-assisted Steam Power Plant Retrofitted with Regenerative System Using Parabolic Trough Solar Collectors. Energy Rep. 6, 1 24-33. doi:10.1016/j.egyr. 2019.12.019 otwiera się w nowej karcie
  5. Alsaffar, A. (2015). An Overview of Location Planning of Solar Generation. Available at: https://www.nrel.gov/docs/fy14osti/60240.pdf. otwiera się w nowej karcie
  6. Aly, A., Bernardos, A., Fernandez-Peruchena, C. M., Jensen, S. S., and Pedersen, A. B. (2019). Is Concentrated Solar Power (CSP) a Feasible Option for Sub-saharan Africa?: Investigating the Technoeconomic Feasibility of CSP in Tanzania. Renew. Energy 135, 12 24-40. doi:10.1016/j.renene.2018.09.065 otwiera się w nowej karcie
  7. Aqachmar, Z., Allouhi, A., Jamil, A., Gagouch, B., and Kousksou, T. (2019). otwiera się w nowej karcie
  8. Parabolic Trough Solar Thermal Power Plant Noor I in Morocco. Energy 178. doi:10.1016/j.energy.2019.04.160 otwiera się w nowej karcie
  9. Aqachmar, Z., Bouhal, T., and Lahrech, K. (2020). Energetic, Economic, and Environmental (3 E) Performances of High Concentrated Photovoltaic Large Scale Installations: Focus on Spatial Analysis of Morocco. Int. J. Hydrogen Energy 45, 10840-10861. doi:10.1016/j.ijhydene.2020.01.210 otwiera się w nowej karcie
  10. Assadeg, J., Sopian, K., and Fudholi, A. (2019). Performance of Grid-Connected Solar Photovoltaic Power Plants in the Middle East and North Africa. Int. J. Electr. Comput. Eng. (IJECE) 9, 3375. doi:10.11591/ijece.v9i5.pp3375-3383 otwiera się w nowej karcie
  11. Awan, A. B., Chandra Mouli, K. V. V., and Zubair, M. (2020a). Performance Enhancement of Solar Tower Power Plant: a Multi-Objective Optimization Approach. Energy Convers. Manag. 225, 113378. doi:10.1016/j.enconman.2020. 113378 otwiera się w nowej karcie
  12. Awan, A. B., Zubair, M., and Chandra Mouli, K. V. V. (2020b). Design, Optimization and Performance Comparison of Solar Tower and Photovoltaic Power Plants. Energy 199, 117450. doi:10.1016/j.energy.2020. 117450 otwiera się w nowej karcie
  13. Bamisile, O., Huang, Q., Dagbasi, M., and Adebayo, V. (2020). Thermo-environ Study of a Concentrated Photovoltaic Thermal System Integrated with Kalina Cycle for Multigeneration and Hydrogen Production. Int. J. Hydrogen Energy 45 (51), 267 16-32. doi:10.1016/j.ijhydene.2020.07.029 otwiera się w nowej karcie
  14. Bellos, E. (2019). Progress in the design and the applications of linear Fresnel reflectors e a critical review. Therm. Sci. Eng. Prog. 10, 1 12-37. doi:10.1016/j. tsep.2019.01.014 otwiera się w nowej karcie
  15. Bishoyi, D., and Sudhakar, K. (2017). Modeling and Performance Simulation of 100 MW LFR Based Solar Thermal Power Plant in Udaipur India. Resource- Efficient Technol. 3 (4), 365-377. doi:10.1016/j.reffit.2017.02.002 otwiera się w nowej karcie
  16. Boukelia, T. E., Arslan, O., and Mecibah, M. S. (2017). Potential Assessment of a Parabolic Trough Solar Thermal Power Plant Considering Hourly Analysis: ANN-Based Approach. Renew. Energy 105, 3 24-33. doi:10.1016/j.renene.2016. 12.081 otwiera się w nowej karcie
  17. Chen, R., Rao, Z., and Liao, S. (2018). Determination of Key Parameters for Sizing the Heliostat Field and Thermal Energy Storage in Solar Tower Power Plants. Energy Convers. Manag. 177, 3 85-94. doi:10.1016/j.enconman.2018.09.065 otwiera się w nowej karcie
  18. Collado, F. J., and Guallar, J. (2019). Quick Design of Regular Heliostat Fields for Commercial Solar Tower Power Plants. Energy 178, 1 15-25. doi:10.1016/j. energy.2019.04.117 otwiera się w nowej karcie
  19. Dong, L., Zhang, T., Pu, T., Chen, N., and Sun, Y. (2019). A Decentralized Optimal Operation of AC/DC Hybrid Microgrids Equipped with Power Electronic Transformer. IEEE Access 7, 157946-157959. doi:10.1109/access.2019.2949378 otwiera się w nowej karcie
  20. Dowling, A. W., Zheng, T., and Zavala, V. M. (2017). Economic Assessment of Concentrated Solar Power Technologies: a Review. Renew. Sustain. energy Rev. 72, 1019-1032. doi:10.1016/j.rser.2017.01.006 otwiera się w nowej karcie
  21. Eajal, A. A., El-Saadany, E. F., and Ponnambalam, K. (2017). "Optimal Power Flow for Converter-Dominated AC/DC Hybrid Microgrids," in Proceedings of the 2017 IEEE International Conference on Industrial Technology (ICIT) (Toronto, Canada: IEEE), 603-608. doi:10.1109/icit.2017.7915427 otwiera się w nowej karcie
  22. Eddhibi, F., Ben Amara, M., Balghouthi, M., and Guizani, A. (2017). Design and Analysis of a Heliostat Field Layout with Reduced Shading Effect in Southern Tunisia. Int. J. Hydrogen Energy 42 (48), 289 73-96. doi:10.1016/j.ijhydene. 2017.07.217 otwiera się w nowej karcie
  23. Farh, H. M. H., Eltamaly, A. M., and Othman,, M. F. (2018). Hybrid PSO-FLC for Dynamic Global Peak Extraction of the Partially Shaded Photovoltaic System. PLOS ONE 13, e0206171. doi:10.1371/journal.pone.0206171 otwiera się w nowej karcie
  24. Furkan, D., and Mehmet Emin, M. (2010). Critical Factors That Affecting Efficiency of Solar Cells. Smart Grid and Renewable Energy 1 (1), 47-50. doi:10.4236/sgre.2010.11007 otwiera się w nowej karcie
  25. Gaga, A., Benssassi, H., Errahimi, F., and Sbai, N. E. (2017). Battery State of Charge Estimation Using an Adaptive Unscented Kalman Filter for Photovoltaics Applications. Int. Rev. Autom. Control 10 (4), 3 49-58. doi:10.15866/ireaco. v10i4.11393 otwiera się w nowej karcie
  26. Georgescu-Roegen, N. (1979). Energy Analysis and Economic Valuation. South. Econ. J. 45, 1023-1058. doi:10.2307/1056953 otwiera się w nowej karcie
  27. Getie, E. M., Gessesse, B. B., and Workneh, T. G. (2020). Photovoltaic Generation Integration with Radial Feeders Using GA and GIS. Int. J. Photoenergy 2020, 8854711. doi:10.1155/2020/8854711 otwiera się w nowej karcie
  28. Ghodbane, M., Boumeddane, B., and Said, N. (2016). A Linear Fresnel Reflector as a Solar System for Heating Water: Theoretical and Experimental Study. Case Stud. Therm. Eng. 8, 176-186. doi:10.1016/j.csite.2016.06 otwiera się w nowej karcie
  29. Ghodbane, M., Boumeddane, B., Said, Z., and Bellos, E. (2019). A Numerical Simulation of a Linear Fresnel Solar Reflector Directedto Produce Steam for the Power Plant. J. Clean. Prod. 231, 494e508. doi:10.1016/j.jclepro.2019.05.201 otwiera się w nowej karcie
  30. Gonzalez-Longatt, F. M. (2005). Model of Photovoltaic Module in Matlab. Ii Cibelec 2005, 1-5.
  31. Hakimi, M., Baniasadi, E., and Afshari, E. (2020). Thermo-economic Analysis of Photovoltaic, Central Tower Receiver and Parabolic Trough Power Plants for Herat City in Afghanistan. Renew. Energy 150, 8 40-53. doi:10.1016/j.renene. 2020.01.009 otwiera się w nowej karcie
  32. Hissouf, M., Feddaoui, M., Najim, M., and Charef, A. (2020). Numerical Study of a Covered Photovoltaic-Thermal Collector (PVT) Enhancement Using Nanofluids. Sol. Energy 199, 1 15-27. doi:10.1016/j.solener.2020.01.083 otwiera się w nowej karcie
  33. IEA (2020). International Energy Agency. Available at: https://www.iea.org/. otwiera się w nowej karcie
  34. Indra Gandhi, V., Logesh, R., Subramaniyaswamy, V., Vijayakumar, V., Siarry, P., and Uden, L. (2018). Multi-Objective Optimization and Energy Management in Renewable Based AC/DC Microgrid. Comput. Electr. Eng. 70, 179-198.
  35. IRENA (2018). Global Energy Transformation: A Roadmap to 2050. International Renewable energy agency. Available at: https://www.irena.org/-/media/Files/ IRENA/Agency/Publication/2018/Jul/IRENA_Renewable_Energy_Statistics_ 2018.pdf. otwiera się w nowej karcie
  36. Islam, M. T., Huda, N., Abdullah, A. B., and Saidur, R. (2018). A Comprehensive Review of State-Of-The-Art Concentrating Solar Power (CSP) Technologies: Current Status and Research Trends. Renew. Sustain. Energy Rev. 91, 987-1018. doi:10.1016/j.rser.2018.04.097 otwiera się w nowej karcie
  37. Islam, M. T., Huda, N., and Saidur, R. (2019). Current Energy Mix and Techno- Economic Analysis of Concentrating Solar Power (CSP) Technologies in Malaysia. Renew. Energy 140, 789-806. doi:10.1016/j.renene.2019.03.107 otwiera się w nowej karcie
  38. Ju, X., Xu, C., Hu, Y., Han, X., Wei, G., and Du, X. (2017). A Review on the Development of Photovoltaic/concentrated Solar Power (PVCSP) Hybrid Systems. Sol. Energy Mater Sol. Cells 161 (12), 3 05-27. doi:10.1016/j.solmat. 2016.12.004 otwiera się w nowej karcie
  39. Kumar, S., Agarwal, A., and Kumar, A. (2021). Financial Viability Assessment of Concentrated Solar Power Technologies under Indian Climatic Conditions. Sustain. Energy Technol. Assessments 43, 100928. doi:10.1016/j.seta.2020.100928 otwiera się w nowej karcie
  40. Laarabi, B., El Baqqal, Y., Dahrouch, A., Barhdadi, A., Deep Pizzi, S., Corbo, L., et al. (2021a). Fintech and SMEs Sustainable Business Models: Reflections and Considerations for a Circular Economy. J. Clean. Prod. 281, 125217.
  41. Laarabi, B., El Baqqal, Y., Rajasekar, N., and Barhdadi, A. (2021b). Updated Review on Soiling of Solar Photovoltaic Systems Morocco and India Contributions. J. Clean. Prod. 311, 127608. doi:10.1016/j.jclepro.2021.127608 otwiera się w nowej karcie
  42. Lagouir, M., Badri, A., and Sayouti, Y. (2019). "An Optimal Energy Management System of Islanded Hybrid AC/DC Microgrid," in Proceedings of the 2019 5th International Conference on Optimization and Applications (ICOA) (Kenitra, Morocco: IEEE), 1-6. otwiera się w nowej karcie
  43. Li, P., Hua, H., Di, K., and Zhou, J. (2016). "Optimal Operation of AC/DC Hybrid Microgrid under Spot Price Mechanism," in Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM) (Boston, MA, USA: IEEE), 1-5. doi:10.1109/pesgm.2016.7741670 otwiera się w nowej karcie
  44. Li, P., and Zheng, M. (2019). Multi-objective Optimal Operation of Hybrid AC/DC Microgrid Considering Source-Network-Load Coordination. J. Mod. Power Syst. Clean. Energy 7, 1229-1240. doi:10.1007/s40565-019-0536-3 otwiera się w nowej karcie
  45. Li, y. N. (2021). Renewable Power Generation Subsidies in china: An Economic Feasibility Analysis and Policy Recommendations. University of Tokyo. doctoral dissertation.
  46. Liu, S., and Janajreh, I. (2012). "Wind Energy Assessment: Masdar City Case Study," in 2012 8th International Symposium on Mechatronics and its Applications (Springer), 1-6. doi:10.1109/ISMA.2012.6215162 otwiera się w nowej karcie
  47. Lokar, J., and Virtic, P. (2020). The Potential for Integration of Hydrogen for Complete Energy Self-Sufficiency in Residential Buildings with Photovoltaic and Battery Storage Systems. Int. J. Hydrogen Energy 45, 345 66-78. doi:10. 1016/j.ijhydene.2020.04.170 otwiera się w nowej karcie
  48. Lopez, O., Banos, A., and Arenas, A. (2020). On the Thermal Performance of Flat and Cavity Receivers for a Parabolic Dish Concentrator and Low/medium Temperatures. Sol. Energy 199, 91123. doi:10.1016/j.solener.2019.07.056 otwiera się w nowej karcie
  49. Lund, H., and Mathiesen, B. V. (2009). Energy System Analysis of 100% Renewable Energy Systems-The Case of Denmark in Years 2030 and 2050. Energy 34 (5), 524-531. otwiera się w nowej karcie
  50. Luque, A., and Hegedus, S. (2011). Handbook of Photovoltaic Science and Engineering. John Wiley & Sons.
  51. Majidi, M., Nojavan, S., Nourani Esfetanaj, N., Najafi-Ghalelou, A., and Zare, K. (2017). A Multi-Objective Model for Optimal Operation of a battery/PV/fuel Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 879985 otwiera się w nowej karcie
  52. Cell/grid Hybrid Energy System Using Weighted Sum Technique and Fuzzy Satisfying Approach Considering Responsible Load Management. Sol. Energy 144, 79-89. doi:10.1016/j.solener.2017.01.009 otwiera się w nowej karcie
  53. Marzo, A., Salmon, A., Polo, J., Ballestrín, J., Soto, G., Quiñones, G., et al. (2021). Solar Extinction Map in Chile for Applications in Solar Power Tower Plants, Comparison with Other Places from Sunbelt and Impact on LCOE. Renew. Energy 170, 197-211. doi:10.1016/j.renene.2021.01.126 otwiera się w nowej karcie
  54. Maulik, A., and Das, D. (2018). "Multi-Objective Optimal Dispatch of AC-DC Hybrid Microgrid," in Proceedings of the 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC) (Kota Kinabalu, Malaysia: IEEE), 82-87. doi:10.1109/appeec.2018.8566354 otwiera się w nowej karcie
  55. Ming, M., Wang, R., Zha, Y., and Zhang, T. (2017). Multi-objective Optimization of Hybrid Renewable Energy System Using an Enhanced Multi-Objective Evolutionary Algorithm. Energies 10 (5), 674. doi:10.3390/en10050674 otwiera się w nowej karcie
  56. Mohamed, A. F., Elarini, M. M., and Othman, A. M. (2014). A New Technique Based on Artificial Bee Colony Algorithm for Optimal Sizing of Stand-Alone Photovoltaic System. J. Adv. Res. 5 (3), 397-408. doi:10.1016/j.jare.2013.06.010 otwiera się w nowej karcie
  57. Motahhir, S., El Hammoumi, A., and El Ghzizal, A. (2020). The Most Used MPPT Algorithms: Review and the Suitable Low-Cost Embedded Board for Each Algorithm. J. Clean. Prod. 246, 118983. doi:10.1016/j.jclepro.2019.118983 otwiera się w nowej karcie
  58. Moukhtar, I., El Dein, A. Z., Elbaset, A. A., and Mitani, Y. (2021). "Penetration Characteristics of Hybrid CSP and PV Solar Plants Economic," in Power Systems (Springer Science and Business Media Deutschland GmbH), 99-111. doi:10.1007/978-3-030-61307-5_5 otwiera się w nowej karcie
  59. Otero, A. F., Cidras, J., and Garrido, C. (1998). "Genetic Algorithm Based Method for Grounding Grid Design," in 1998 IEEE International Conference on Evolutionary Computation Proceedings (IEEE World Congress on Computational Intelligence, Cat. No. 98TH8360), 120-123. otwiera się w nowej karcie
  60. Ouagued, M., Khellaf, A., and Loukarfi, L. (2018). Performance Analyses of CueCl Hydrogen Production Integrated Solar Parabolic Trough Collector System under Algerian Climate. Int. J. Hydrogen Energy 43 (6), 34 51-65. doi:10. 1016/j.ijhydene.2017.11.040 otwiera się w nowej karcie
  61. Prakash, P., and Khatod, D. K. (2016). Optimal Sizing and Siting Techniques for Distributed Generation in Distribution Systems: A Review. Renew. Sustain. energy Rev. 57, 111-130. doi:10.1016/j.rser.2015.12.099 otwiera się w nowej karcie
  62. Qiu, H., Gu, W., Xu, Y., and Zhao, B. (2019). Multi-Time-Scale Rolling Optimal Dispatch for AC/DC Hybrid Microgrids with Day-Ahead Distributionally Robust Scheduling. IEEE Trans. Sustain. Energy 10 (4), 1653-1663. doi:10. 1109/TSTE.2018.2868548 otwiera się w nowej karcie
  63. Raturi, A. K. (2019). Renewables 2019 Global Status Report. Available at: https:// www.ren21.net/wp-content/uploads/2019/05/gsr_2019_full_report_en.pdf.
  64. Sanda, A., Moya, S. L., and Valenzuela, L. (2019). Modeling and Simulation Tools for Direct Steam Generation in Parabolic-Trough Solar Collectors: a Review. Renew. Sustain. energy Rev. 113, 109226. doi:10.1016/j.rser.2019.06.033 otwiera się w nowej karcie
  65. Simsek, Y., Mata-Torres, C., Escobar, R., and Cardemil, J. M. (2018). Incentives and Financial Conditions Effect Analysis on Levelized Cost of Electricity (LCOE) and Government Cost for Concentrated Solar Power (CSP) Projects in Chile. AIP Conf. Proc. 2033. doi:10.1063/1.5067134 otwiera się w nowej karcie
  66. Solar paces (2019). Solar Paces NREL. Available at: https://solarpaces.nrel.gov/. otwiera się w nowej karcie
  67. Tascioni, R., Arteconi, A., Del Zotto, L., and Cioccolanti, L. (2020). Fuzzy Logic Energy Management Strategy of a Multiple Latent Heat Thermal Storage in a Small-Scale Concentrated Solar Power Plant. Energies 13 (11), 23-28. doi:10. 3390/en13112733 otwiera się w nowej karcie
  68. Wikimedia Commons (2018). How Solar Power Works. Available at: https:// commons.wikimedia.org/wiki/File:How_Solar_Power_Works.png. otwiera się w nowej karcie
  69. Zakaria, A., Ismail, F. B., Lipu, M. S. H., and Hannan, M. A. (2020). Uncertainty Models for Stochastic Optimization in Renewable Energy Applications. Renew. Energy 145, 1543-1571. doi:10.1016/j.renene.2019.07.081 otwiera się w nowej karcie
  70. Zhang, H. L., Baeyens, J., Degreve, J., and Cac eres, G. (2013). Concentrated Solar Power Plants: Review and Design Methodology. Renew. Sustain. energy Rev. 22, 466e81. doi:10.1016/j.rser.2013.01.032 otwiera się w nowej karcie
  71. Zhang, H., and Toudert, J. (2018). Optical Management for Efficiency Enhancement in Hybrid Organic-Inorganic Lead Halide Perovskite Solar Cells. Sci. Technol. Adv. Mater. 19 (1), 411-424. doi:10.1080/14686996.2018. 1458578 otwiera się w nowej karcie
  72. Zhao T, T., Xiao, J., Hai, K. L., and Wang, P. (2017). "Two-Stage Stochastic Optimization for Hybrid AC/DC Microgrid Embedded Energy Hub," in Proceedings of the 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2) (Beijing, China: IEEE), 1-6. doi:10.1109/ei2.2017. 8245648 otwiera się w nowej karcie
  73. Zhao Zy, Z. Y., Chen, Y. L., and Thomson, J. D. (2017). Levelized Cost of Energy Modeling for Concentrated Solar Power Projects: a China Study. Energy 120, 1 17-27. doi:10.1016/j.energy.2016.12.122 otwiera się w nowej karcie
  74. Zhar, R., Allouhi, A., Ghodbane, M., Jamil, A., and Lahrech, K. (2021). Parametric Analysis and Multi-Objective Optimization of a Combined Organic Rankine Cycle and Vapor Compression Cycle. Sustain. Energy Technol. Assessments 47, 101401. doi:10.1016/j.seta.2021.101401 otwiera się w nowej karcie
  75. Zheng, Y., Jenkins, B. M., Kornbluth, K., and Traeholt, C. (2018). Optimization under Uncertainty of a Biomass-Integrated Renewable Energy Microgrid with Energy Storage. Renew. energy 123, 204-217. doi:10.1016/j.renene.2018. 01.120 otwiera się w nowej karcie
  76. Zhuang, X., Xu, X., Liu, W., and Xu, W. (2019). LCOE Analysis of Tower Concentrating Solar Power Plants Using Different Molten-Salts for Thermal Energy Storage in China. Energies 12 (7), 1394. doi:10.3390/en12071394 otwiera się w nowej karcie
  77. Zineb, A., Hicham, B., Khadija, L., and Abdelfettah, B. (2021). Solar Technologies for Electricity Production: An Updated Review. nternational J. Hydrogen Energy 46 (60), 30790-30817. ISSN 0360-3199. doi:10.1016/j.ijhydene.2021. 06.190 otwiera się w nowej karcie
  78. Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. otwiera się w nowej karcie
Weryfikacja:
Brak weryfikacji

wyświetlono 91 razy

Publikacje, które mogą cię zainteresować

Meta Tagi